Preparation and Characterization of New C_2 - and C_1 -Symmetric Nitrogen, Oxygen, Phosphorous, and Sulfur Derivatives and Analogs of TADDOL Part I ## **TADDAMIN-Derived and Phosphorous-Containing Compounds** by Arkadius Pichota¹), Volker Gramlich²), Hans-Ulrich Bichsel³), Thomas Styner³), Thomas Knöpfel³), Ralf Wünsch⁴), Tobias Hintermann⁴), W. Bernd Schweizer, Albert K. Beck*, and Dieter Seebach* Laboratorium für Organische Chemie, Departement für Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich (phone: +41-44-632-2990; fax: +41-44-632-1144; e-mail: seebach@org.chem.ethz.ch) TADDOL (= α , α , α' , α' -Tetraaryl-1,3-dioxolane-4,5-dimethanol) and the corresponding dichloride are converted to TADDAMINs (=(4S,5S)-2,2,N,N'-tetramethyl- α , α , α' , α' -tetraphenyl-1,3-dioxolan-4,5-dimethanamines) (*Scheme 2*) and ureas, **12**-**15**, and to TADDOP derivatives with seven-membered O-P-O ester rings (*Schemes 3* and 4). Cl/P-Replacement *via* the *Michaelis-Arbuzov* reaction (*Scheme 7*) on mono- and dichlorides, derived from TADDOL, are described. It was not possible to obtain phosphines with the P-atom attached to the benzhydrylic C-atom of the TADDOL skeleton (*Schemes 6* and 7). The X-ray crystal structures (*Figs. 1* and 2) of ten of the more than 30 new TADDOL derivatives are discussed. Full experimental details are presented. **1. Introduction.** – As discussed in the previous paper [1a] of this series⁵) of publications on TADDOL (= α , α , α' , α' -tetraaryl-1,3-dioxolane-4,5-dimethanol) derivatives [1], the modification of the OH groups (HO \rightarrow R–O, R–OSO_x, R–OPO_x) and their substitution by other heteroatoms (S, N, and P) in TADDOLs lead to a plethora of chiral compounds for possible new applications in organic synthesis. The previous report [1a] was focused on (mainly C_1 -symmetrical) S-containing derivatives, and in the present report the preparation of hitherto unpublished (mainly C_2 -symmetrical) N- and P-containing compounds derived from the parent TADDOL (1) is described. The methods used for the transformations are likely to be applicable to TADDOLs with geminal diaryl groups other than Ph and with substituents R other than Me at C(2) of the dioxolane ring. The key intermediate *en route* to C_1 -symmetrical derivatives was the monochloride 2, which is formed selectively under the conditions of the *Appel* reaction ¹⁾ Part of the Ph.D. Thesis of A. P., ETH Dissertation No. 14015 (2000). ²⁾ Laboratorium für Kristallographie, Sonnegstrasse 5, ETH Zürich, CH-8092 Zürich. ³) Part of the Diplomarbeit (Master Thesis) of *H.-U. B.* (1997/1998), *T. S.* (1999/2000) and *T. K.* (2000) ETH Zürich. ⁴⁾ Postdoctoral Fellows 1996/1997 (R. W.) and 2000 (T. H.) ETH Zürich. ⁵⁾ Part I: 'Compounds Containing One or Two Sulfur Substituents and Use in Cu-Catalyzed Enantioselective Conjugate Additions to Cyclic Enones' (p. 1239 of this issue); Part III: 'Some New Chiral *Brønsted* Acids for Organocatalysis and pK_a Values in MeO–(CH₂)₂–OH/H₂O – A Survey' (p. 1303 of this issue). [1a][2][3]. The key intermediates for preparing C_2 -symmetrical derivatives are the TADDOL (1) [4] itself or the dichloro derivation 3 [2][3] (*Scheme 1*). For the three compounds 1-3, large-scale preparations have been described. Scheme 1. Preparation of the Chloro Alcohol 2 and of the Dichloro Derivative 3 from TADDOL 1 [1a][2][3] **2. TADDAMIN Derivatives.** – The diamines **4** and **5** were prepared⁶) by heating in an autoclave the dichloro derivative **3** with NH₃ [5] or with MeNH₂, in the presence of NH₄Cl. Mixtures of the desired diamine and the *trans*-fused bicycles **6** and **7** are formed; the ratio depends on the reaction conditions (temperature, pressure, presence of excess NH₄Cl, see *Scheme* 2 and *Exper. Part*); due to the strain of the *trans*-fused dioxa-aza-bicyclo[3.3.0]octane skeleton, there is partial hydrolysis of the acetonide group⁷) during chromatography on silica gel, with formation of the pyrrolidine-diol **8** (from **7**; *cf.* the *O*- and *S*-analogs **9**)⁷). Under optimized conditions, the ratios of monoto bicyclic product are such that 60-65% of the TADDAMINs (=(4S,5S)-2,2,N,N'-tetramethyl- $\alpha,\alpha,\alpha',\alpha'$ -tetraphenyl-1,3-dioxolane-4,5-dimethanamine)⁸) **4** and **5** can be isolated after chromatography of the crude product mixtures. Treatment of the dichloro compound with tenfold excess of PhNH₂ gave the *N*-Ph-substituted TADDAMIN **10** (*Scheme* 2). In unsuccessful attempts to generate a chiral, TADDAMIN-derived carbene $\bf A$ – and transition metal complexes thereof [9] – from an orthoformic acid derivative of type $\bf B$ [10], or from a thiourea such as $\bf 11$ (R \pm H) [11], we have also prepared the ureas $\bf 12a$, $\bf 13$, and the thiourea $\bf 12b$, as well as the compounds $\bf 14$ and $\bf 15$ obtained by benzylation at the S-atom; with *rac-*2-phenylethyl bromide, the two diastereoisomers (*R*)- $\bf 15$ and (*S*)- $\bf 15$ were formed in a 1:1 ratio, and one of them was isolated in pure crystalline form (see X-ray analysis in *Sect.* 5). The *N*-Ph-substituted TADDAMIN $\bf 10$ could not be converted to a urea under various conditions. Finally, the TADDAMIN ⁶⁾ For the azido and thiocyanato route to the diamines 4 and 5, see [2][3]. For a conversion of 4 to 5, see also Footnote 8. ⁷⁾ This has also been observed with the corresponding tetrahydrothiophene derivative [2] (cf. [6][7]). ⁸⁾ The doubly lithiated TADDAMIN 5 was used to generate achiral Li-enolates (cf. of cyclohexanone), which, by way of coordination with the mono-lithio-TADDAMIN, reacted with electrophiles (aldehydes, nitro-olefines) to give chiral products of high diastereoisomer and enantiomer purity [8]; compound 5 was prepared for this investigation through the bis-formamide (R = CHO instead of Me in 5) and LiAlH₄ reduction. Scheme 2. Preparation of the TADDAMINs 4-8 and 10 from the Dichloro Derivative 3 and NH₃, MeNH₂, or PhHN₂. Optimization of the yields of diamines 4 and 5 by carrying out the reaction in the presence of excess NH₄Cl; no solvent was used. The heterocyclic diols 8 and 9 are formed by hydrolysis of the corresponding highly strained bicycles. **4** and pyridine-2,6-dicarbaldehyde were condensed (TsOH, molecular sieve (MS), in boiling toluene) to give the macrocycle **16** (67%), the crystals of which turned out to be one of the very few examples of an organic zeolite [12]. **3. Phosphorous-Containing TADDOL Derivatives.** – Since our first report on TADDOP derivatives of type \mathbf{C} and \mathbf{D} , and their use in enantioselective transition metal-catalyzed reactions [2][3][13], the compounds of type \mathbf{C} have made a remarkable *career* in many laboratories. This is demonstrated by the list of contents⁹) in a recent 32-page review article by Lam [14]¹⁰)¹¹). Such TADDOP derivatives have, however, not only been employed in transition metal catalysis but also as stoichiometric reagents, for instance, for the preparation of β -amino phosphonates [20], or as kind of organocatalysts for a sophisticated cross benzoin reaction [21] (with type \mathbb{C} , $\mathbb{R}^3 = \mathrm{OH}$). $$R^{1}$$ O P^{1} P^{1} O P^{2} P^{2 Not surprisingly, all the phosphoramidites **17**, which we had prepared in the mid-1990s, have, with one exception, **17d**, now been described in the literature by other groups (see references in *Scheme 3*)¹²). Compounds **17** have a tendency to hydrolyze¹³) to phosphite **19**, which could be prepared from TADDOL and PCl₃ with aqueous workup in 81% yield¹⁴). Reactions of the intermediate TADDOP chloride with bulky amines (*cf.* 2,2,6,6-tetramethylpiperidin-4-one ethylene ketal, Ph₂NH, phenothiazine) did not lead to the corresponding compounds **17**; in one case, we isolated *ca.* 10% of the rather unstable compound **20** (with a P,P bond) from a reaction mixture ¹⁵). Oxidation of the phosphoramidites **17** to the stable phosphoroxyamidites **18a–18f** (*Scheme 3*) was carried out with H_2O_2 (avoiding acidic conditions as with *m*-chloroperbenzoic acid). ⁹⁾ Hydrosilylations, hydroborations and diborations, hydrogenations, conjugate additions, allylic substitutions, nucleophilic allylations, cycloadditions, miscellaneous reactions [14]. ¹⁰⁾ For a comparison of TADDOP ligands with corresponding biaryl and BINOL derivatives in Rhcatalyzed multicomponent cycloadditions, see [15]. In some more or less randomly chosen papers published in 2011, the use of such phosphonites [16], phosphoramidites [17][18], and phosphites [19] is described for Pt-, Pd-, and Cu-catalyzed enantioselective diborations, direct arylations, conjugate allylations, 'diastereodivergent deracemization', and 1,4-additions of *Grignard* reagents, respectively. ¹²⁾ In the Exper. Part, we only present data differing from those published elsewhere; 17g is commercially available; for 17, R₂N = pyrrolidin-1-yl, there is an Org. Synth. procedure in preparation [22a]. For some spirocyclic phosphites and phosphonites, see [22b]. ¹³⁾ In the chromatographic purification (SiO₂) of the phosphoramidites 17, we added some Et₃N to prevent this acid-catalyzed hydrolysis (see Exper. Part). ¹⁴⁾ For previous preparations and an X-ray crystal structure of 19, see [20] [21]. Although compounds of type 19 react as P-nucleophiles (RO)₂P^{III}OH, most of their crystal structures show a short P,O bond (ca. 1.45 Å) typical of a phosphate (RO)₂P^V(O)H (search in the Cambridge Crystallographic Data Base). ¹⁵⁾ There is an AB system of signals in the 31 P-NMR spectrum at δ 158 (P^{III}) and 13.5 ppm (P^V). For full characterization of **20**, see *Exper. Part*. Scheme 3. Preparation of Phosphoramidites 17, Phoshoroxyamidites 18, and of the Phosphite 19, and Isolation of the P^V/P^{III} Derivative 20 from TADDOL,
PCl₃, R₃NH, and H₂O₂ | R [ref.] | 17 (yield [%]) | 18 (yield [%]) | |--|-----------------------|-----------------------| | -(CH ₂) ₅ [23] | a (91) | a (71) | | -(CH ₂) ₂ O(CH ₂) ₂ - [24] | b (79) | b (59) | | Bn [24] | c (69) | c (66) | | Allyl | d (69) | d (72) | | ⁱ Pr [25] | e (88) | e (85) | | Et [23b] | f (57) | f (80) | | Me [26] | g (72) | | | cHex [27] | h (79) | | Phosphonic and phosphoric acid derivatives of TADDOL have also been prepared by reaction of the Li₂-dialkoxide with RPOCl₂ (R = alkyl or Cl). As outlined in *Scheme 4*, the resulting primary products **21** and **23** can be used to prepare the phosphono-acetate **22** and the methyl ester **24**, the Na salt **25**, as well as the anhydride **26** of the phosphoric acid derivative. Obviously, these P^{V} compounds were prepared for testing stereoselective olefinations (*cf.* **21** and **22**) or phosphorylations (*cf.* **26**), which were, however, hitherto not seriously investigated ¹⁶). We also tried to prepare P-derivatives of the TADDAMIN 10 (*Scheme 5*), which was first treated with 2 equiv. of BuLi and then with a chloro- or dichlorophosphine. From the 'messy' product mixtures, the three compounds, 27–29, could be isolated in pure form. Of the desired type of products with an N–P bond, only the methyl diazaphosphite 27 was found. The Ph₂PCl attacked the lithiated aniline moiety in the *para*-position to give the phosphine 28 and the diphosphine 29. The crystal structure of compound 27 is shown in *Sect. 5*. ¹⁶⁾ The retirement of the corresponding author D. S., at the end of 2002 was accompanied by a dramatic reduction in the group size and by the necessity to decide which one of the research areas could be continued on small scale. The decision was made in favor of the investigation of peptides consisting of homologated proteinogenic amino acid residues [28]. Scheme 4. TADDOP-PV Derivatives 21-26 Prepared by Reaction of TADDOL with Phosphorylating Reagents and Subsequent Conversions. The yields shown are those of purified, mostly recrystallized materials (see Exper. Part). a) 2.2 equiv. of BuLi. b) RPOCl₂. c) POCl₃. d) 21a, 4 equiv. of BuLi, then 4 equiv. of NC-CO₂Me, e) MeONa. f) NaOH/THF/H2O. g) 1 equiv. of 23/THF. # 4. Results of Attempts to Replace the TADDOL OH Group(s) by R₂P Groups. -The successful application of DIOP (=(-)-2,2-dimethyl-4,5-bis[(diphenylphosphino)methyl-1,3-dioxolone)-type ligands E in transition-metal chemistry [29] and the numerous uses of TADDOLs as ligands for Lewis-acidic metal centers [30] suggest that a C_2 -symmetrical diphosphine **E** (cf. $R^1 = R^2 = R^4 = Ph$, $R^3 = Me$, 'TADDDP') or a C_1 symmetrical monophosphine \mathbf{F} with a R_2P , and an amino or an alkoxy group might be excellent chiral ligands. Thus, we have undertaken an intensive investigation towards the preparation of phosphines of types **E** and **F**. As outlined in *Scheme 6*, various starting materials **G**, reagents, and conditions were employed to test the possibility of forming C,P bonds either by nucleophilic (C-X+ HPR_2 or metal- PR_2) or by electrophilic (C-metal + XPR_2) phosphinylation. In no case were we able to isolate a P-containing product, derived from TADDOL, from any of the reactions mixtures. What we did isolate were products of elimination: the dienes Scheme 5. Reactions of the TADDAMIN 10 with a Chloro- and Dichlorophosphine Derivative. Besides the isolated and characterized products 27–29 many non-identified compounds were present in the crude reaction mixtures; from the reaction with Ph.PCl, 30% of starting material 10 was recovered. **30**¹⁷) and **32** [34], and the – optically active ¹⁸) – epoxide **31** (*Scheme 6*); the butadiene could either have been formed by double elimination or by deoxygenation of the epoxide **31**, which, in turn, could have arisen from a process indicated in **H** (*Scheme 6*). Thus, the structural instability inherent to the TADDOL skeleton has reared its ugly head 19)²⁰)! We than studied introductions of P substituents in the TADDOL scaffold by *Michaelis–Arbuzov* reactions [37], by using the dichloro compound 3, the sulfate 34, and the chloro methoxy derivative 35 [1a], and the phosphites $(MeO)_3P$, $(MeO)_2P$ -Ph,or MeOPPh₂ (*Scheme* 7). The cyclic sulfate 34 was included in this investigation, because heterocyclic compounds of this type are known to undergo O,P-substitution with P-nucleophiles [38]. Compound 34 was prepared from the readily available sulfite 33 [3] by oxidation with NaIO₄ [39] (see also the crystal structure in *Sect.* 5). The reactions of the di- and monochloro derivatives 3 and 35, respectively, with excess methyl phosphites required high temperatures and long reaction times to occur $(120^{\circ}/12 \text{ h})$. With the dichloride, cyclic phosphonate 36 and phosphinate 37 are formed in modest yields; a single diastereoisomer, 36, and two diastereoisomers, (R_P) -37 and (S_P) -37 (in a ratio of 3:2), were isolated as products from the reaction with $(MeO)_3P$ and with $(MeO)_2PPh$, respectively. The configurations of the isomers 37 was assigned by an X-ray crystal-structure analysis of the (S_P) -isomer (see *Sect.* 5). The reaction of ¹⁷⁾ Yellow powder, isolated from the reaction of G(X = Y = Br) + G(X = Br, Y = OH) (ratio 2:1) with PH₃ pyridine in DMF in an autoclave; yield *ca.* 20%. Compound **30** has been isolated and characterized before from **3** by heating at 80° for 5 d in DMF [2]. ¹⁸⁾ The racemic form of **31** has been described before [35]. ¹⁹⁾ See also cationic rearrangements observed with the TADDOL carrying methoxyphenyl groups [36]. ²⁰⁾ There might be a chance to prepare TADDDP derivatives by radical processes, the intermediates of which have a lower tendency to undergo rearrangements and/or eliminations. Scheme 6. Phosphine Derivatives \mathbf{E} and \mathbf{F} with Structures Similar to That of TADDOL, and Attempted Reactions of F, Cl, Br, and Triflate Derivatives of TADDOL with Various P^{III} Reagents. The dibromo derivative \mathbf{G} (X = Y = Br) is rather unstable and could not be isolated in pure form (from $\mathbf{1} + \mathrm{SOBr}_2/\mathrm{Et}_3\mathrm{N}$); it was used in a mixture with the monobromo derivative \mathbf{G} (X = Br, Y = OH). For the elimination products $\mathbf{30} - \mathbf{32}$, see Footnotes 17 and 18, and Exper. Part. In \mathbf{H} , a generalized mechanistic picture is proposed for the formation of the tetraphenyl-butadiene monoepoxide 31. A related double elimination of X and RO would lead to tetraphenyl-butadiene 32, which could, however, also have been formed from 31, by the known deoxygenation of epoxides with phosphines [31]. Solutions of LiPH₂ [32] and LiPEt₂ [33] in Et₂O were prepared according to literature procedures. $(MeO)_3P$ with the cyclic sulfate took place at lower temperature $(80^\circ)^{21}$), which might be the reason why the monocyclic hydroxy phoshonate **38**, and not the bicyclic compound **36**, was isolated. Monocyclic products **39** and **40** were also accessible from the chloro methoxy derivative **35** (*vide infra* for the crystal structures of **38** and **39**). ²¹) ... it better had, because the sulfate **34** starts decomposing above *ca.* 95°! Scheme 7. Preparation of the Sulfate **34** and Cl/P- and SO_2O/P Replacements by the Michaelis—Arbuzov Reaction to Form P^V Analogs **36–40** of TADDOL with a Benzhydrylic C-P Bond. Attempted deoxygenation to a phosphine leads to dephosphinylation. Thus, we finally had replaced a TADDOL OH group by a P-containing substituent in the compounds **36–40**! To obtain a monodentate phosphine ligand of type **F** (*vide supra*; *Scheme 6*), we had, however, to remove an O- from the P-atom. This turned out to be impossible in all our experiments carried out with the methoxy phosphine oxide **40**, and employing almost 20 different reagents and conditions²²). According to ³¹P-NMR analyses, there were no P-containing compounds in the product mixtures. The only compound, which was sometimes obtained in good yields, was the product **41** of reductive removal of the P-atom. Thus, the weak benzhydrylic bond of the TADDOL-type skeleton has prevented success, again²⁰). **5. X-Ray Crystal Structures.** – The structures of ten of the compounds described in the previous sections are shown in *Figs. 1* (TADDAMIN derivatives) and 2 (P-containing compounds). Besides three monocyclic derivatives (**10** in *Fig. 1*, and **38**, **39**, ²²⁾ These include silanes, disilanes, LiAlH₄, LiAlH₄/CeCl₃, DIBAL-H, Cp₂ZrClH, BH₃, BH₃/AlMe₃, Raney Ni/H₂. Fig. 1. X-Ray crystal structures of TADDAMIN derivatives 10, 12a, 12b, and (R)-15 in Fig. 2), there are seven bicyclic ones, one [4.3.0] skeleton (37 in Fig. 2) and six [5.3.0] skeletons (12a, 12b, and 15 in Fig. 1, and 23, 27, and 34 in Fig. 2). In all but one structure, the characteristic TADDOL-type features are observed, with quasi-axial and quasi-equatorial Ph groups on the CPh₂ centers and antiperiplanar O–C–C–X conformations around the exocyclic C–C bonds. Only in the methoxy-phosphonate 39 (in Fig. 2), the $P(O)(OMe)_2$ group occupies the 'axial' position, with a gauche-relationship between the dioxolane O- and the P-atom (sterically and stereoelectronically favorable). In the other two monocyclic structures, the hydroxy-phosphonate 38 (Fig. 2) and the N,N'-diphenyl-TADDAMIN 10 (Fig. 1), there are H-bonds between the OH group and the P(O) O-atom in the first case, and between the anilino-NH group and the aniline N-atom in the second case²³). In the structures 12a and 12b (Fig. 1), there is a deviation of the urea moieties from coplanarity, while, in the seven-membered ring of the 2-phenylethylsulfanyl-diazepin 15, five ring atoms, more or less accurately, share a plane. The other three
seven-membered rings, containing the sequences of atoms N–P–N ²³⁾ For a discussion of the delicate interplay between H-bonding, steric, and stereoelectronic effects that govern the conformation around the exocyclic dioxolane C-C bond in TADDOLs and their analogs, see [1a]. Fig. 2. X-Ray crystal structures of the P-containing compounds 23, 27, and 37-39, and of the sulfate 34 (27), O–P–O (23) and O–S–O (34) (*Fig.* 2), are strongly folded, and the oxa-phosphacyclohexane ring in (S_P)-37 exhibits a chair conformation with an axial P(O) O-atom and two axial Ph substituents (*Fig.* 2). In a metal complex of 27, the two neighboring *N*-Ph groups (one *quasi*-axial, the other *quasi*-equatorial) will provide a strongly asymmetric environment; thus it would be worthwhile to improve the yield of the reaction of TADDAMIN 10 with phosphinylating reagents. Of the 'formally' C_2 -symmetrical TADDOL-derived compounds with bicyclo[3.3.0]octane, bicyclo[4.3.0]nonane, and bicyclo[5.3.0]decane skeletons (Fig. 3, top), described in the present series of papers [1] or in previous publications by us and others, essentially none has a geometrically exact C_2 -structure in the crystal. Not only do different conformations around the C,Ph bonds lead to deviations from C_2 -symmetry but also the conformations, i.e., the folding of the rings, especially of the seven-membered rings (Fig. 3, bottom). On the other hand, the NMR spectra of these compounds are compatible with C_2 -symmetry: there are, for instance, single signals for the Me H-atoms and for the bridgehead CH H-atoms in the ¹H-NMR spectra. Thus, at least on the NMR time scale, there is C_2 -symmetry at ambient temperatures²⁴). We gratefully acknowledge the contributions of the co-workers of the services of the *Laboratorium* für Organische Chemie: Prof. Dr. B. Jaun, B. Brandenberg, and P. Zumbrunnen (NMR), Dr. W. Amrein, H. U. Hediger, R. Häfliger, and O. Greter (MS), M. Schneider, and D. Manser (elementary analyses, molecular weights). We also acknowledge the generous financial support by ETH Zürich and Novartis AG, Basel. #### **Experimental Part** 1. General. Abbreviations: FC: flash chromatography; h.v.: high vacuum, 0.01-0.1 Torr. THF was freshly distilled over K before use. Et₃N was distilled over CaH₂. CH₂Cl₂ was used in puriss. quality. Solvents for workup and chromatography: pentane and hexane were distilled over P₄O₁₀ or Sikkon (anh. CaSO₄; Fluka), AcOEt over Sikkon, Et₂O over KOH/FeSO₄, and CH₂Cl₂ over P₄O₁₀. PCl₃ was distilled before use. TADDOL and TADDOL derivatives were prepared according to literature procedures: TADDOL (1) [4], dichloride 3 [2] [3], sulfite 33 [3], and chloride 35 [1a]. All other reagents were used as received from Fluka or Aldrich. All indicated reaction temp. were monitored with an internal thermometer (Ebro-TTX-690 digital thermometer). Autoclaves used for reactions under high pressure: 80 (home-made, ETH Zürich), 240, and 450 ml (Autoclave Engineers); the pressure was monitored with a Haenni-ED-510 apparatus (Piezoresitiver Druckmessumformer). TLC: Macherey-Nagel Alugram SIL G/UV₂₅₄ or Merck 60 F₂₅₄ silica-gel plates; detection by UV_{254 nm} light or I₂ or by dipping in/spraying with phosphomolybdic acid soln. [phosphomolybdic acid (25 g), Ce(SO₄)₂·4 H₂O (10 g), H₂SO₄ (60 ml), H₂O (940 ml)], followed by heating. FC: Fluka silica gel 60 (0.040 – 0.063 mm), at ca. 0.3 bar. GC: Carlo Erba Fractovap 4160 with Carlo Erba DP 700 CE integrators and Macherey-Nagel FS-Hydrodex β-PM cap. column (50 m × 0.25 mm i.d.) for enantiomer separations. M.p.: Büchi-510 apparatus, uncorrected. Optical rotations: Perkin-Elmer 241 polarimeter (10-cm, 1-ml cell), at r.t. IR spectra: Perkin-Elmer-1620-FT-IR spectrometer, in cm⁻¹. NMR Spectra: Bruker AMX-500 (¹H: 500 and ¹³C: 125 MHz), AMX-400 (1H: 400 and 13C: 100 MHz), Varian Gemini 300 (1H: 300, 13C: 75, and 19F: 282 MHz), Mercury 300 (1H: 300 MHz, 13 C: 75, and 19 F: 282 MHz) or Gemini 200 (1 H: 200, and 13 C: 50 MHz); chemical shifts (δ) in ppm downfield from TMS (δ 0.0) as internal standard; J values in Hz. MS: VG Tribrid (EI; 70 ev), VG ZAB-2 SEQ (FAB; 3-Nitrobenzyl alcohol matrix), IonSpec Ultima (FT-ICR-MALDI; 4.7 T; 2,5- ²⁴) This is also true of the monocyclic compounds i with an intramolecular H-bond. Dihydroxybenzoic acid matrix), *Bruker REFLEX* (TOF-MALDI; N₂ laser) or *Finnigan MAT TSQ 7000* (ESI) spectrometer; in *m/z* (% of basic peak). HR-MS: *IonSpec Ultima* (FT-ICR-MALDI; 4.7 T; 2,5- Fig. 3. Different types of C₂-symmetrical bicyclic TADDOL derivatives and analogs (top) and view along the 'formal' C₂ axes in some of the corresponding crystal structures (bottom). For the crystal structures with bicyclo[3.3.0] and -[5.3.0] skeletons, see the present paper and [1][3]; for the crystal structure of the cyclic disulfide with bicyclo[4.3.0] skeleton, see [2]. dihydroxybenzoic acid matrix). Elemental analyses were performed by the Microanalytical Laboratory of the Laboratorium für Organische Chemie, ETH Zürich. 2. General Procedures. Preparation of the TADDAMINs 4 and 5, and the Pyrrols 6 and 7. General Procedure 1 (GP 1). Dichloro compound 3, NH₄Cl (12.74 g, 240 mmol, 30 equiv.), and NH₃ (condensed at -78°) or MeNH₂ (25 ml, 0.8 mol) were placed in an autoclave, the mixture was heated to 100° (30 bar) and stirred for 2 d. The autoclave was cooled to r.t., and the excess NH₃ or MeNH₂ was vented. The crude product was dissolved in CH₂Cl₂/H₂O, and the aq. phase was neutralized with 1n HCl soln. The org. phase was washed with sat. aq. NaHCO₃ soln., H₂O, and sat. aq. NaCl soln., and dried (MgSO₄). The solvent was removed under reduced pressure, and the residue was purified. Preparation of Urea-TADDOL Derivatives 12 and 13. General Procedure 2 (GP 2). Caution: The following reactions should be carried out in a well-ventilated hood because of the toxicity of phosgene and thiophosgene. In analogy to [40], a soln. of the appropriate TADDAMIN derivative (1 equiv.) in toluene (ca. 0.1M) was treated with Et_3N (2–3 equiv.) and cooled to 0°. Phosgene (COCl₂; 1 equiv.; 20% soln. in toluene) or thiophosgene (1 equiv.; neat) was added, and the mixture was stirred at 0° for 1.5 h. The mixture was warmed to r.t., washed quickly with H_2O , and the org. layer was separated and dried (MgSO₄). The solvent was removed under reduced pressure, and the residue was purified as indicated. Preparation of Isothiourea-TADDOL Derivatives **14** and **15**. General Procedure 3 (GP 3). To a soln. of thiourea derivative **12b** (1 equiv.) in DMF (0.08m) was added the appropriate alkyl bromide (1.0–1.3 equiv.) at r.t. After stirring for 7 h–7 d, sat. aq. NaHCO₃ soln. was added, the org. layer was separated, and the aq. layer was extracted with CH_2Cl_2 . The combined org. layers were washed with $H_2O(3\times)$, dried (MgSO₄), and the solvent was removed under reduced pressure. The residue was purified as indicated. Preparation of TADDOL-Derived Phosphoramidites 17a – 17h. General Procedure 4 (GP 4). To a soln. of TADDOL 1 (1 equiv.) in CH₂Cl₂ (40 ml) was added Et₃N (2 equiv.) at -50° . After stirring for 5 min, PCl₃ (1 equiv.) was added dropwise over 15 min, which led to the formation of a white precipitate. The mixture was slowly warmed to -20° (ca. 100 min), and then cooled to -50° again. Et₃N (1 equiv.) and the appropriate amine (1 equiv.) were added consecutively, and the mixture was slowly warmed to r.t. After stirring at ambient temp. for further 12 h, sat. aq. NaCl soln. (50 ml) and sat. aq. NaHCO₃ soln. (5 ml) were added, the org. layer was separated, and the aq. layer was extracted with Et₂O (2×). The combined org. layers were dried (MgSO₄), and then the solvent was removed under reduced pressure. The crude product was purified as indicated. Preparation of TADDOL-Derived Phosphoroxy Amidites 18a-18f General Procedure 5 (GP 5). To a soln. of the appropriate phosphoramidite 17 (1 equiv.) in Et₂O (10 ml) was added 30% aq. H₂O₂ soln. (5–11 equiv.) ar r.t. The mixture was stirred for 12 h at ambient temp., and then sat. aq. NaCl soln. (10 ml) was added. The org. layer was separated, and the aq. layer was extracted with Et₂O (20 ml). The combined org. layers were dried (Na₂SO₄), and the solvent was removed under reduced pressure. The crude product was purified by FC (3–4 drops of Et₃N added to 100 ml of solvent). Preparation of P-Containing TADDOL Derivatives 36-40 by Michaelis—Arbuzov Reaction. General Procedure 6 (GP 6). To a soln. of the appropriate TADDOL chloride or sulfate (1 equiv.) in DMF (0.1–4.5M) was added the indicated P compound (5–50 equiv.), and the mixture was stirred for 24 h at 80–120°. After cooling to r.t., the solvent was removed under reduced pressure (cooling trap!), and the residue was purified by FC. 3. Preparation of the TADDAMINs **4–8**, and **10**. (48,5S)-2,2-Dimethyl- α , α , α' , a'-tetraphenyl-1,3-dioxolane-4,5-dimethanamine (**4**) and (3aS,6aS)-Tetrahydro-2,2-dimethyl-4,4,6,6-tetraphenyl-4H-1,3-dioxolo[4,5-c]pyrrole (**6**). According to GP1, **3** (5.00 g, 9.95 mmol) and NH_4Cl (15.94 g, 300 mmol, 30 equiv.) were placed in an autoclave (250 ml) under Ar. After cooling to -78° , 44 g of NH_3 were condensed in, and the mixture was heated to 100° (30 bar) and stirred for 2 d. The autoclave was cooled to r.t., and the excess NH_3 was vented. The crude product was dissolved in CH_2Cl_2/H_2O , and the aq. phase was neutralized with NH_3Cl soln. The org. phase was washed with sat. aq. NH_3Cl soln, NH_3Cl soln, and dried ($MgSO_4$). The residue (NH_3Cl by NH_3Cl by NH_3Cl soln, and dried (NH_3Cl by NH_3Cl by NH_3Cl soln, and dried (NH_3Cl by NH_3Cl soln, and dried (NH_3Cl by NH_3Cl by NH_3Cl by NH_3Cl soln, and dried (NH_3Cl by $NH_$ CHCl₃) ([3]: $[a]_{\rm in}^{\rm th} = -42.96$ (c = 0.68, CHCl₃). The anal. data matched those reported in
[2][3][5]. For anal. data of **6**, see below and [3]. (4\$,5\$)-N⁴,N⁵,2,2-Tetramethyl-α,α,α',α'-tetraphenyl-1,3-dioxolane-4,5-dimethanamine (5), (3a\\$,6a\\$)-Tetrahydro-2,2,5-trimethyl-4,4,6,6-tetraphenyl-4H-1,3-dioxolo[4,5-c]pyrrole (7), and (3\\$,4\\$)-1-Methyl-2,2,5,5-tetraphenylpyrrolidine-3,4-diol (8). According to GP 1, 3 (4.00 g, 7.96 mmol), NH₄Cl (12.74 g, 240 mmol), and MeNH₂ (25 ml, 0.8 mol) were placed in an autoclave (80 ml), the mixture was heated to 100° (30 bar) and stirred for 2 d. The autoclave was cooled to r.t., and the excess MeNH₂ was vented. The crude product was dissolved in CH_2Cl_2/H_2O , and the aq. phase was neutralized with 1N HCl soln. The org. phase was washed with sat. aq. NaHCO₃ soln., H₂O, and sat. aq. NaCl soln, and dried (MgSO₄). The solvent was removed under reduced pressure, and the residue was purified by FC (2 ×) (1. pentane/CH₂Cl₂ 5:7; 100 g of SiO₂; 2. toluene/AcOEt 9:1; 150 g of SiO₂) to afford 5 (2.80 g, 62%), 7 (0.30 g, 8%), and 8 (0.23 g, 7%). Data of 5. M.p. 197-200° ([2]: M.p. 200-203°). The anal. data matched those of [2][3]. Data of 7. White foam. $R_{\rm f}$ (pentane/CH₂Cl₂ 5:7) 0.65. [α]_{$\rm fit$} = -95.2 (c = 1.09, CHCl₃). IR (CHCl₃): 3692w, 3087w, 3058m, 3007s, 2936m, 2803w, 1953w, 1813w, 1599m, 1493m, 1444s, 1383s, 958s. 1 H-NMR (400 MHz, CDCl₃): 1.22 (s, 2 Me); 2.40 (s, NMe); 4.82 (s, 2 CH); 7.13 – 7.16 (m, 4 arom. H); 7.22 – 7.32 (m, 16 arom. H). 13 C-NMR (100 MHz, CDCl₃): 26.7, 31.53 (Me); 70.09 (C); 81.73 (CH); 118.65 (C); 126.56, 127.08, 127.31, 127.93, 129.25, 129.47 (CH); 142.21, 142.82 (C). EI-MS: 461 (r, r), 384 (83), 362 (30), 346 (37), 207 (53), 196 (100), 194 (90), 179 (77), 167 (53), 118 (67). Anal. calc. for $\rm C_{32}H_{31}NO_{2}$ (461.61): C 83.26, H 6.77, N 3.03; found: C 83.09, H 6.99, N 2.91. Data of **8**. M.p. $192-195^{\circ}$. $R_{\rm f}$ (toluene/AcOEt 9:1) 0.85. [a]_D^{1.1} = -52.4 (c=0.94, CHCl₃). IR (CHCl₃): 3555m, 3059m, 3007s, 2807w, 1962w, 1897w, 1815w, 1757w, 1598w, 1490s, 1443s, 1401m. ¹H-NMR (400 MHz, CDCl₃): 1.55-1.64 (m, 2 OH); 2.30 (s, Me); 4.65-4.71 (m, 2 CH); 7.08-7.11 (m, 4 arom. H); 7.25-7.39 (m, 16 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 30.10 (Me); 73.38 (C); 76.36 (CH); 127.21, 127.40, 127.60, 127.91, 129.89, 129.97 (CH); 142.91, 142.58 (C). FAB-MS: 421 (23, M^+), 420 (27), 419 (36), 360 (19), 345 (17), 344 (42), 343 (100), 209 (12), 208 (12), 197 (13), 196 (43), 195 (16), 179 (14), 167 (43), 165 (17), 148 (34), 117 (30). (3a\$,6a\$)-Tetrahydro-2,2-dimethyl-4,4,6,6-tetraphenyl-4H-1,3-dioxolo[4,5-c]pyrrole (6). According to GP1, 3 (15.0 g, 33.5 mmol) was placed in an autoclave (450 ml) and dissolved in THF (200 ml). The autoclave was cooled to -50° , NH₃ (65.0 g, 3.80 mol) was condensed in. The mixture was heated to 100° (39 bar) and stirred for 80 h. After cooling to r.t., excess NH₃ was vented, and the crude product was dissolved in CH₂Cl₂ (400 ml). After addition of H₂O (200 ml), the aq. phase was neutralized with 1N HCl soln. For better phase separation, sat. aq. NaCl soln. (100 ml) and CCl₄ (300 ml) were added. The org. phase was washed with H₂O (2 × 400 ml) and sat. aq. NaCl soln. (250 ml), and dried (MgSO₄). The solvent was removed under reduced pressure to afford crude 6 (12.5 g, 83%). For further purification, a sample (5.00 g) was purified by FC (SiO₂ (800 g); pentane/Et₂O 35:1) and subsequent trituration with pentane (15 ml; 30 min under reflux and 1 h at r.t.) to yield anal. pure 6 (3.00 g). Colorless solid. M.p. $140-141^\circ$ ([3]: M.p. $140-141^\circ$). [α] $_{10}^{\rm r.t.} = -230.9$ (c = 1.01, CHCl₃) ([3]: [α] $_{10}^{\rm r.t.} = -222.6$ (c = 0.5, CHCl₃)). The anal. data matched those of [3]. (4\$,5\$)-2,2-Dimethyl-N⁴,N⁵,α,α,α',α'-hexaphenyl-1,3-dioxolane-4,5-dimethanamine (**10**). A soln. of **3** (5.55 g, 11.02 mmol) in CH₂Cl₂ (11 ml) was treated with PhNH₂ (10.0 ml, 109.6 mmol), and the mixture was stirred at r.t. for 16 h. The brown soln. was washed with H₂O, dried (MgSO₄), and the solvent was removed under reduced pressure. The crude product was purified by FC (SiO₂ (200 g); CH₂Cl₂), and subsequent trituration with Et₂O under reflux afforded **10** (4.81 g, 71%). Colorless crystals. M.p. 239 – 240°. R_f (CH₂Cl₂) 0.75. $[a]_D^{\text{pl}} = -73.2$ (c = 1.00, CHCl₃). IR (CHCl₃): 3286m, 3061m, 3007m, 2935m, 1953m, 1828m, 1601m, 1496m, 1447m, 1372m, 1083m, 1064m, 891m. ¹H-NMR (400 MHz, CDCl₃): 0.91 (m, 2 Me); 4.28 (m, 2 CH); 5.94 (m, 2 NH); 6.27 (m, 4 arom. H); 6.53 (m, 4 arom. H); 7.07 – 7.15 (m, 6 arom. H); 7.32 – 7.34 (m, 4 arom. H); 7.42 – 7.48 (m, 6 arom. H); 7.78 – 7.80 (m, 4 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 26.7 (Me); 67.13 (C); 84.65 (CH); 107.48 (C); 116.84, 118.23, 126.65, 127.61, 127.81, 128.28, 128.74, 130.78 (CH); 139.04, 142.46, 145.02 (C). FAB-MS: 618 (m, 4 2]⁺), 617 (18, [m + 1]⁺), 466 (6), 447 (10), 446 (25), 432 (35), 432 (100), 388 (8), 373 (9), 345 (11), 259 (11), 258 (33), 179 (8). Anal. calc. for C₄₃H₄₀N₂O₂ (616.81): C 83.73, H 6.54, N 4.54; found: C 83.69, H 6.65, N 4.50. 4. Preparation of the TADDAMIN derivatives 12-16 and 27-29. (3a\$,8a\$)-Hexahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-6H-1,3-dioxolo[4,5-e][1,3]diazepin-6-one (12a). A soln. of 4 (2.10 g, 4.50 mmol) in toluene (60 ml) was treated with Et₃N (1.26 ml, 9.0 mmol) and phosgene (2.33 ml, 4.50 mmol; 20% soln. in toluene) according to GP 2. The crude product was dissolved in Et₂O, and 12a (0.37 g) was precipitated by addition of pentane as a colorless solid. The solvent of the mother liquor was removed, and the residue was purified by FC (80 = 100 = 1 (3a\$,8a\$)-Hexahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-6H-1,3-dioxolo[4,5-e][1,3]diazepine-6-thione (**12b**). A soln. of **4** (3.00 g, 6.46 mmol) in toluene (50 ml) was treated with Et₃N (2.70 ml, 19.40 mmol) and thiophosgene (CSCl₂; 0.50 ml, 6.52 mmol) according to GP 2. The crude product was triturated with Et₂O for 15 min to afford **12b** (1.03 g). After removing the solvent from the filtrate, the residue was triturated with Et₂O to afford further **12b** (0.40 g). Purification of the mother liquor by FC (SiO₂; Et₂O) afforded further **12b** (1.00 g). Total yield: 2.43 g (74%). Beige powder. M.p. $>310^\circ$. R_f (pentane/Et₂O 2:3) 0.66. [a] $_D^{\rm it}=-218.7$ (c=0.98, CHCl₃). IR (CHCl₃): 3387w, 3059w, 2990m, 2046m, 1811w, 1734w, 1657w, 1599m, 1525m, 1612s, 1494s, 1446s, 1428m, 1381m, 1104s, 875m. 1 H-NMR (400 MHz, CDCl₃): 1.20 (s, 2 Me); 4.59 (s, 2 CH); 6.85 (s, 2 NH); 7.12-7.15 (m, 4 arom. H); 7.25-7.29 (m, 6 arom. H); 7.39-7.43 (m, 6 arom. H); 7.60-7.63 (m, 4 arom. H). 13 C-NMR (100 MHz, CDCl₃): 26.89 (Me); 70.53 (C); 77.91 (CH); 110.84 (C); 127.65, 127.98, 128.11, 128.52, 128.80, 129.29 (CH); 139.56, 143.32, 185.87 (C). FAB-MS: 1013 (22, [2 M + 1]+), 507 (100, [M + 1]+), 237 (30), 179 (75). Anal. calc. for $C_{32}H_{30}N_2O_2S$ (506.67): C 75.86, H 5.97, N 5.53, S 6.33; found: C 75.90, H 6.51, N 5.58, S 6.35. $(3a\$,8a\$) - Hexahydro-2,2,5,7 - tetramethyl-4,4,8,8 - tetraphenyl-6H-1,3 - dioxolo[4,5-e][1,3] diazepin-6-one~~(\textbf{13}). A soln.~of~~\textbf{5}~~(95~\text{mg},~0.19~\text{mmol})~in~toluene~~(2.5~\text{ml})~was~treated~with~Et}_3N~~(26~\text{ml},~9.0~\text{mmol})~and~COCl}_2~~(100~\text{ml},~0.19~\text{mmol};~20\%~\text{soln.~in~toluene})~according~to~~GP~2.~The~crude~product~was~purified~by~FC~~(SiO}_2~~(40~\text{g});~pentane/Et}_2O~1:2)~to~~afford~~\textbf{13}~~(73~\text{mg},~73\%)~.~White~solid~foam.~Drying~at~~100°~\text{in}~~h.v.~for~3~h~~afforded~~\textbf{13}~~Colorless~solid.~M.p.~~162~-163°.~~R_f~~(pentane/Et}_2O~2:3)~0.66.~~[\alpha]_{\text{b}^{1}}^{-1}=~-~136.4~~(c=~0.94,~\text{CHCl}_3)~.~\text{IR}~~(\text{CHCl}_3)~:~3671w,~3061m,~3007s,~2936m,~2635w,~2461w,~2256w,~1957w,~1750s,~1612s,~1493s,~1446s,~1337s,~600w.~^1\text{H-NMR}~~(400~\text{MHz},~\text{CDCl}_3)~:~0.94~~(s,~2~\text{Me})~;~2.46~~(s,~2~\text{NMe})~;~5.33~~(s,~2~\text{CH})~;~7.25~-7.38~~(m,~20~\text{arom}.~\text{H}).~^{13}\text{C-NMR}~~(100~\text{MHz},~\text{CDCl}_3)~:~26.75,~37.54~~(\text{Me})~;~71.99~~(\text{C})~;~80.82~~(\text{CH})~;~111.74~~(\text{C})~;~127.19,~127.33,~127.76,~128.13,~128.68,~130.54~~(\text{CH})~;~140.28,~141.96,~164.84~~(\text{C}).~\text{FAB-MS}~:~1037~~(19,~[2~M~+~1]^+)~,~519~~(100,~[M~+~1]^+)~,~460~~(30)~,~418~~(17)~,~265~~(25)~,~179~~(48)~.~\text{Anal.~calc.}~\text{for}~\text{C}_{34}\text{H}_{34}\text{N}_2\text{O}_3~~(518.66)~:~\text{C}~~78.74~~\text{H}~~6.61~,N~~5.40~;~\text{found}~:~\text{C}~~78.58~~\text{H}~~6.81~,N~~5.38~.}$
(3a\$,8a\$)-3a,5,\$,8a-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-6-[(phenylmethyl)sulfanyl]-4H-I,3-dioxolo[4,5-e][1,3]diazepine (14). A soln. of 12b (830 mg, 1.64 mmol) in DMF (20 ml) was treated with BnBr (0.25 ml, 2.1 mmol) according to <math>GP3 for 7 h. Purification by FC ($\$iO_2$ (40 g); pentane/ Et_2O 5:1) afforded 14 (850 mg, 87%). White foam. For anal. purposes, a sample was crystallized from pentane/ Et_2O by slow evaporation of the solvent. M.p. $202-204^\circ$. R_f (pentane/ Et_2O 1:1) 0.84. [α] $_5^{t.}=-142.5$ (c=1.03, CHCl $_3$). IR (CHCl $_3$): 3385w, 3062w, 3008m, 1667s, 1600w, 1494s, 1445s, 1372m, 1096s, 1032w, 881m. 1 H-NMR (400 MHz, CDCl $_3$): 0.89 (s, Me); 1.05 (s, Me), 4.12 (d, J=13.7, CH $_2$); 4.28 (d, J=13.7, CH $_2$); 4.58 (d, J=9.05, CH); 4.71 (s, NH); 4.76 (d, J=9.05, CH); 7.16-7.30 (m, 21 arom. H); 7.50-7.52 (m, 2 arom. H). 13 C-NMR (100 MHz, CDCl $_3$): 26.8, 27.0 (Me); 36.9 (CH $_2$); 68.1, 71.4 (C); 77.8, 78.5 (CH); 110.5 (C); 126.3, 126.6, 126.8, 126.9, 127.42, 127.44, 127.5, 127.6, 127.8, 128.4, 128.5, 128.6, 129.0, 129.7, 130.2 (CH); 138.6, 140.9, 142.0, 145.2, 146.5, 148.8 (C). HR-MS: 597.2573 ($[M+H]^+$, $C_{39}H_{37}N_2O_2S^+$; calc. 597.2576 (-0.33 ppm)). MALDI-FT-ICR-MS: 597.3 (100, $[M+H]^+$), 546.3 (32). Anal. calc. for $C_{39}H_{36}N_2O_2S$ (596.79): C 78.49, H 6.08, N 4.69, S 5.37; found: C 78.60, H 6.37, N 4.75, S 5.44. (3aS,8aS)-3a,5,8,8a-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-6-{[(1R)- and (1S)-1-phenylethyl]-sulfanyl]-4H-1,3-dioxolo[4,5-e][1,3]diazepine ((R)-15 and (S)-15, resp.). A soln. of 12b (2.0 g, 3.9 mmol) in DMF (50 ml) was treated with 1-phenylethyl bromide (0.54 ml, 4.0 mmol) according to GP3 for 7 d. Purification by FC (3 × ; 1. SiO₂ (100 g); pentane/Et₂O 15:1; 2. SiO₂ (160 g); toluene/hexane 1:1; 3. SiO₂ (36 g); toluene/hexane 1:2) afforded diastereoisomerically enriched (R)-15 (350 mg) and (S)-15 (360 mg) besides a mixture of (R)-15/(S)-15 (450 mg, 19%) and starting material 12b (675 mg, 34%). Recrystallization from Et₂O afforded pure (R)-15 (320 mg, 13%). Colorless crystals. Similarly, (S)-15 (126 mg, 5%) was obtained by recrystallization from hexane. Colorless crystals. Total yield of 15: 37%. Data of (R)-15. M.p. 231 – 232°. R_f (toluene) 0.71. [α] $_{1}^{64}$ = -54.8 (c = 1.06, CHCl $_3$). IR (CHCl $_3$): 3390m, 3064w, 3008m, 2926w, 1662s, 1600w, 1493s, 1474s, 1445s, 1372m, 1096s, 1029w, 960w, 880w. ¹H-NMR (400 MHz, CDCl $_3$): 0.89 (s, Me); 1.05 (s, Me); 1.52 (d, J = 7.3, Me); 4.59 (d, J = 9.1, CH); 4.66 (d, J = 9.0, CH); 4.66 (s, NH); 4.78 (q, J = 7.3, CH); 6.98 – 7.01 (m, 2 arom. H); 7.09 – 7.46 (m, 19 arom. H); 7.49 – 7.51 (m, 4 arom. H). ¹³C-NMR (100 MHz, CDCl $_3$) 22.5, 26.8, 27.0 (Me); 45.9 (CH); 67.8, 71.4 (C); 77.9, 78.5 (CH); 110.5 (C); 126.3, 126.4, 126.7, 127.0, 127.4, 127.45, 127.49, 127.51, 127.8, 128.42, 128.45, 128.6, 128.7, 130.1 (CH); 141.2, 141.7, 144.1, 145.3, 146.8, 148.9 (C, N₂CS). HR-MS: 611.2728 ([M + H] $^+$, C₄₀H₃₉N₂O₂S $^+$; calc. 611.2732 (-0.65 ppm)). MALDI-FT-ICR-MS: 611.3 (7, [M + H] $^+$); 507.2 (79), 431.2 (19), 345.2 (42), 273.0 (100), 267.1 (29). Anal. calc. for C₄₀H₃₈N₂O₂S (610.82): C 78.66, H 6.27, N 4.59, S 5.25; found: C 78.73, H 6.48, N 4.45, S 5.24. Data of (S)-15. M.p. 197–198°. R_f (toluene) 0.59. $[a]_D^{1.1} = -264.7$ (c = 1.02, CHCl₃). IR (CHCl₃): 3386w, 3062w, 3007m, 1664s, 1600w, 1477s, 1445s, 1372m, 1172s, 1096s, 1028w, 960w, 880w. ¹H-NMR (400 MHz, CDCl₃): 0.85 (s, Me); 1.00 (s, Me); 1.70 (d, J = 7.1, Me); 4.52 (d, J = 9.0, CH); 4.66 (g, J = 7.1, CH); 4.66 (s, NH); 4.79 (d, J = 9.0, CH); 7.04 – 7.07 (m, 2 arom. H); 7.14 – 7.31(m, 21 arom. H); 7.49 – 7.52 (m, 2 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 22.4, 26.7, 27.0 (Me); 46.2 (CH); 68.2, 71.6 (C); 77.4, 78.2 (CH); 110.5 (C); 126.3, 126.6, 126.9, 127.3, 127.4, 127.5, 127.6; 127.7, 128.3, 128.56, 128.60, 129.7, 130.4 (CH); 140.8, 142.2, 143.3, 145.4, 146.2, 148.7 (C, N₂CS). HR-MS: 611.2725 ([M + H] $^+$, C_{40} H₃₉N₂O₂S $^+$; calc. 611.2732 (-1.1 ppm)). MALDI-FT-ICR-MS: 633.3 (s, [M + Na] $^+$), 611.3 (s, [M + H] $^+$); 507.2 (100), 431.2 (23), 345.2 (51), 267.1 (36). Anal. calc. for C_{40} H₃₈N₂O₂S (610.82): C 78.66, H 6.27, N 4.59, S 5.25; found: C 78.44, H 6.39, N 4.60, S 5.26. $(3a\$,5E,12E,14a\$,17a\$,19E,26E,28a\$)-3a,4,14,14a,17a,18,28,28a-Octahydro-2,2,16,16-tetramethyl-4,4,14,14,18,18,28,28-octahhenyl-7,11:25,21-dinitrilo-1,3-dioxolo[4,5-c][1,3]dioxolo[4,5-p][1,6,14,19]tetraazacyclohexacosine (16). To a soln. of 4 (0.60 g, 1.3 mmol) in toluene (150 ml), in a 500-ml round-bottomed flask, equipped with a condenser and 4-Å molecular sieve (1 g) in the gas phase [41], was added pyridine-2,6-dicarbaldehyde (0.174 g, 1.3 mmol) and TsOH·H₂O (24 mg, 0.13 mmol). After 3 h heating under reflux, the solvent was evaporated, and the residue was dried under h.v. Purification by FC (alumina (75 g); pentane/Et₂O) yielded 16 (0.47 g, 67%). Colorless solid. M.p. 304–305°. <math>R_f$ (alumina, pentane/Et₂O 1:1) 0.8. $[a]_{L^1}^{\text{ph}} = -131.91$ (c = 1.08, CHCl₃). IR (CHCl₃): 3061m, 3007s, 2934m, 1642s, 1584m, 1566m, 1494s, 1445s, 1380m, 1334m, 1164m, 1071s, 1022m, 930m, 906m, 879m. ¹H-NMR (400 MHz, CDCl₃): 0.21 (s, Me); 0.91 (s, Me); 4.81 (s, CH); 6.28 (s, CH); 7.01–7.22 (m, 8 arom. H); 7.18 (s, CHN); 7.32–7.51 (m, 11 arom. H); 7.63–7.67 (m, 4 arom. H); 8.17 (s, CHN). ¹³C-NMR (100 MHz, CDCl₃): 26.3, 27.7 (Me); 75.7, 76.3 (C); 80.5, 80.8 (CH); 106.1, 114.0 (C); 120.9, 121.9, 126.4, 126.5, 126.9, 127.0, 127.1, 127.5, 127.8, 128.4, 128.8, 130.3, 131.3, 132.5, 136.5 (CH); 138.0, 141.6, 145.0, 145.9, 153.6, 155.3 (C); 156.9, 159.1 (CHN). MALDI-FT-ICR-MS: 1149.5 (100, $[M+Na]^+$); 1127.2 (25, $[M+H]^+$), 883.4 (65), 383.2 (91). Anal. calc. for $C_{76}H_{66}N_6O_4$ (1127.40): C 80.97, H 5.90, N 7.45; found: C 80.93, H 6.09, N 7.44. (3aS,8aS)-Hexahydro-6-methoxy-2,2-dimethyl-4,4,5,7,8,8-hexaphenyl-4H-1,3-dioxolo[4,5-e][1,3,2]diazaphosphepine (27). To a soln. of 10 (1.54 g, 2.5 mmol) in THF (20 ml), BuLi (3.4 ml, 5.3 mmol) was added dropwise at -70° . The soln. was warmed to -10° (ca. 20 min), then cooled again to -70° , and MeOPCl₂ (0.27 ml, 0.28 mmol) was added. The dry ice was removed from the cooling bath, and the mixture was warmed slowly to r.t. (ca. 3 h) and stirred for further 2 h at r.t. The solvent was removed under reduced pressure, and the residue (dried under h.v.) was purified by FC (2 × ; 1. SiO₂ (75 g); hexane/Et₂O 10:1; 2. SiO₂ (18 g); hexane/Et₂O 20:1) to afford 27 (150 mg, 9%). Colorless solid. M.p. 142–143° (dec.). R_f (hexane/Et₂O 10:1) 0.5. [α] $_D^{\text{Li}} = -15.0$ (c = 0.78, CHCl₃). IR (CHCl₃): 3062m, 3003m, 2935m, 1595m, 1488s, 1445m, 1381m, 1170m, 1075s, 1022s, 948s, 911s, 891s, 14-NMR (400 MHz, CDCl₃): 0.32 (s, Me); 0.51 (s, Me); 3.16 (s, 3s (H,P) = 14.0, MeO); 5.89 (s, J=7.6, CH); 6.29 (s, J=7.6, CH); 6.78–7.37 (s, 26 arom. H); 7.68–7.70 (s, 2 arom. H); 7.92–7.94 (s, 2 arom. H). 13C-NMR (100 MHz, CDCl₃): 26.7, 27.8, 54.6 (s, 2s (C,P) = 36.1) (Me); 75.8 (s, 2s = 7.5), 79.3 (s, 2s = 11.4) (C); 81.1, 82.7 (CH); 111.3 (C); 116.9, 118.3, 122.4, 125.61, 125.65, 126.2, 126.3, 126.61, 126.64, 126.71, 126.73, 126.76, 126.84, 127.38, 127.44, 127.6, 127.8, 128.0, 128.1, 128.3, 128.8, 129.4, 130.5, 130.8, 132.0, 132.7, 132.8, 133.9 (CH); 140.5, 140.6, 143.8, 145.7, 146.0, 146.8, 147.0, 147.3 (C). 31 P-NMR (120 MHz, CDCl₃): 136.7 MALDI-FT-ICR-MS: 677.3 (100, $[M + H]^+$); 431.2 (24), 345.2 (37), 273.0 (29). Anal. calc. for $C_{44}H_{41}N_{2}O_{3}P$ (676.79): C 78.09, H 6.11, N 4.14, P 4.58; found: C 77.92, H 6.34, N 3.98, P 4.61. (4\$,5\$)-N⁴-[4-(Diphenylphosphino)phenyl]-2,2-dimethyl-N⁵, $\alpha,\alpha,\alpha',\alpha'$ -pentaphenyl-1,3-dioxolane-4,5-dimethanamine (28) and (4\$,5\$)-N⁴,N⁵-Bis[4-(diphenylphosphino)phenyl]-2,2-dimethyl- $\alpha,\alpha,\alpha',\alpha'$ -tetraphenyl-1,3-dioxolane-4,5-dimethanamine (29). To a soln. of 10 (0.2 g, 0.32 mmol) in THF (2.6 ml) was added BuLi (0.5 ml, 0.75 mmol) at -70° . The soln. was warmed to 0° , stirred for further 1 h, and then PClPh₂ (0.22 ml, 1.6 mmol) was added at 0° . The red mixture was stirred for further 3 h at 0° , and the solvent was removed under reduced pressure. Purification of the residue by FC (SiO₂ (25 g); pentane/Et₂O 15:2) afforded, besides recovered 10 (50 mg, 25%), 28 (110 mg, 42%), and 29 (15 mg, 5%). Data of **28**. $R_{\rm f}$ (pentane/Et₂O 5:1) 0.25. [α]₅th = -77.8 (c = 0.93, CHCl₃). IR (CHCl₃): 3286m (br.), 3059m, 3007m, 2935w, 1597s, 1497s, 1447m, 1434m, 1391m, 1382m, 1324m, 1084m, 908m, 892m. ¹H-NMR (400 MHz, CDCl₃): 0.88 (s, Me); 0.92 (s, Me); 4.32 (d, J = 8.0, CH); 4.33 (d, J = 8.0, CH); 5.67 (br. s, NH); 6.22 – 6.24 (m, 2 arom. H, NH); 6.27 – 6.30 (m, 2 arom. H); 6.57 (m, 1 arom. H); 6.77 – 6.86 (m, 4 arom. H); 7.08 – 7.47 (m, 26 arom. H); 7.73 – 7.76 (m, 4 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 26.8, 26.9 (Me); 67.4, 67.5 (C); 84.5, 84.8 (CH); 107.8 (C); 117.1, 117.2, 117.5, 118.9, 126.95, 126.98, 127.9, 128.0, 128.1, 128.2, 128.4, 128.46, 128.52, 128.6, 129.1, 130.96, 131.01, 133.5, 133.8, 134.5, 134.8 (CH); 139.3, 139.6, 142.7, 145.2, 146.6 (C). ³¹P-NMR (162 MHz, CDCl₃): -6.45. HR-MS: 801.3607 ([m+H]+, C_{55} H₅₀N₂O₂P+; calc. 801.3609 (-0.25 ppm)). MALDI-FT-ICR-MS: 839.3 (15, [m+K]+), 801.4 (46, [m+H]+), 573.1 (47), 481.2 (38), 442.2 (100), 273.0 (95). Anal. calc. for C_{55} H₄₉N₂O₂P+ (800.98): C 82.47, H 6.17, N 3.50, P 3.87; found: C 82.30, H 6.37, N 3.54, P 3.70. Data of **29**. White solid foam. $R_{\rm f}$ (pentane/Et₂O 5:1) 0.14. ¹H-NMR (300 MHz, CDCl₃): 0.89 (s, Me); 4.39 (s, CH); 6.02 (br. s, NH); 6.24 – 6.28 (m, 4 arom. H); 6.79 – 6.85 (m, 4 arom. H); 7.10 – 7.41 (m, 36 arom. H); 7.70.-7.73 (m, 4 arom. H). HR-MS: 985.4053 ([m + H]⁺, $C_{67}H_{59}N_2O_2P_2^+$; calc. 985.4052 (-0.10 ppm)). MALDI-FT-ICR-MS: 1039.4 (9), 985.4 (3, [m + H]⁺), 458.2 (57), 442.4 (97), 273.0 (100). 5. Preparation of the TADDOP Derivatives 17-26.
1-[(3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-yl]piperidine (17a). TADDOL (1; 1.50 g, 3.21 mmol) was treated with Et₃N (0.90 ml, 6.42 mmol) and PCl₃ (0.28 ml, 3.21 mmol), and then with Et₃N (0.45 ml, 3.21 mmol) and piperidine (0.32 ml, 3.21 mmol) according to GP 4. Washing the crude product (1.79 g) with ice-cold Et₂O (20 ml) afforded 17a (1.69 g, 91%). For anal. purposes, a sample was purified by FC (hexane/CH₂Cl₂ 1:3; 3-4 drops of Et₃N added to 100 ml of solvent). Colorless powder. M.p. $210-212^{\circ}$. [α]_D^L = -151.4 (c=1.13, CHCl₃). IR (CHCl₃): 3066w, 3008m, 2937m, 2853w, 1600w, 1494m, 1447m, 1382w, 1372m, 1164m, 1086w, 1047m, 1036s, 1018s, 951s, 879m, 822w, 640w. ¹H-NMR (300 MHz, CDCl₃): 0.30 (s, Me), 1.33 (s, Me), 1.54-1.64 (m, 3 CH₂), 3.17-3.23 (m, NCH₂), 3.28-3.33 $(m, NCH_2), 4.79 (d, J = 8.4, CH), 5.19 (dd, J(H,H) = 8.4, J(H,P) = 3.4, CH), 7.18 - 7.37 (m, 12 arom. H),$ 7.43 - 7.52 (m, 4 arom. H), 7.63 - 7.67 (m, 2 arom. H), 7.78 - 7.81 (m, 2 arom. H). 13 C-NMR (75 MHz, CDCl₃): 25.10, 25.20, 26.90, 26.95, 27.48, 44.74, 45.00, 81.08, 81.58, 82.21, 82.47, 82.61, 82.66, 111.56, 125.39, 127.05, 127.18, 127.23, 127.30, 127.46, 127.56, 127.72, 128.11, 128.32, 128.87, 128.93, 129.13, 142.05, 142.42, 146.78, 147.29. ³¹P-NMR (122 MHz, CDCl₃): 138.15. FAB-MS: 580 (1, M^+), 384 (18), 326 (16), 238 (17), 237 (97), 236 (21), 208 (13), 207 (30), 180 (19), 179 (100). Anal. calc. for. C₃₆H₃₈NO₄P (579.68): C 74.59, H 6.61, N 2.42; found: C 74.63, H 6.60, N 2.12. Anal. data match those in [23]. 4-[(3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphe-pin-6-yl]morpholine (17b). TADDOL (1; 1.50 g, 3.21 mmol) was treated with Et₃N (0.90 ml, 6.42 mmol) and PCl₃ (0.28 ml, 3.21 mmol), and then with Et₃N (0.45 ml, 3.21 mmol) and morpholine (0.28 ml, 3.21 mmol) according to *GP 4*. Washing the crude product (1.80 g) with ice-cold Et₂O (20 ml) afforded 17b (1.47 g, 79%). For anal. purposes, a sample was recrystallized from hexane/CH₂Cl₂ (2:1) at −20°. Colorless powder. M.p. 209−210° ([24]: M.p. 230°). [α] $_{\rm b}^{\rm L}$ = −159.2 (c = 1.00, CHCl₃). IR (CHCl₃): 3062w, 3007m, 2964w, 2903w, 2857w, 1600w, 1494m, 1447m, 1383m, 1372m, 1346w, 1297w, 1256m, 1165m, 1110s, 1081m, 1050s, 1038s, 1013m, 956s, 916m, 879s, 826m, 640w. ¹H-NMR (300 MHz, CDCl₃): 0.32 (s, Me); 1.28 (s, Me); 3.18 −3.24 (m, NCH₂); 3.25 −3.37 (m, NCH₂); 3.68 −3.72 (m, 2 OCH₂); 4.82 (d, J = 8.4, CH); 5.19 (dd, J(H,H) = 8.4, J(H,P) = 3.4, CH); 7.19 – 7.40 (m, 12 arom. H); 7.46 – 7.49 (m, 2 arom. H); 7.56 (dd, J = 7.8, J = 1.9, 2 arom. H); 7.63 (d, J = 7.2, 2 arom. H); 7.74 – 7.77 (m, 2 arom. H). 13 C-NMR (75 MHz, CDCl₃): 25.35, 27.10, 27.45, 43.92, 44.24, 67.76, 67.89, 81.00, 81.38, 81.92, 82.27, 111.83, 127.06, 127.32, 127.48, 127.63, 127.73, 128.05, 128.11, 128.62, 128.75, 128.84, 128.90, 141.60, 142.05, 142.78, 146.02, 146.36, 146.81. 31 P-NMR (122 MHz, CDCl₃): 138.13. FAB-MS: 1092 (9), 1064 (16), 1051 (12), 1049 (14), 1048 (23), 599 (16), 598 (32), 583 (42), 582 (100, M⁺), 580 (19), 431 (21). Anal. calc. for C_{35} H₃₆NO₅P (581.65): C 72.27, H 6.24, N 2.41; found: C 72.17, H 6.33, N 2.28. Anal. data match those in [24]. (3aR,8aR) - Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-N,N-bis(phenylmethyl)-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-amine (17c). TADDOL (1; 2.82 g, 6.03 mmol) was treated with Et₃N (1.69 ml, 12.13 mmol) and PCl₃ (0.53 ml, 6.07 mmol), and then with Et₃N (0.84 ml, 6.06 mmol) and Bn₂NH (1.16 ml, 6.03 mmol) according to*GP* $4. Purification by FC (hexane/Et₂O 3:1; 3 – 4 drops of Et₃N added to 100 ml of solvent) afforded 17c (2.88 g, 69%). Colorless powder. M.p. 190 – 192°. [<math>\alpha$] $_{\rm b}^{\rm TL} = -63.3$ (c = 0.98, CHCl₃). IR (CHCl₃): 3062w, 3007m, 2934w, 1952w, 1892w, 1812w, 1601w, 1494m, 1447s, 1383m, 1372w, 1290w, 1165m, 1086m, 1049s, 1039m, 999m, 975s, 918w, 878s, 826m, 640w. ¹H-NMR (300 MHz, CDCl₃): 0.32 (s, Me); 1.33 (s, Me); 4.19 (s, 1040, s, 1050, $(3a\text{R},8a\text{R})\text{-}Tetrahydro\text{-}2,2\text{-}dimethyl\text{-}4,4,8,8\text{-}tetraphenyl\text{-}N,N\text{-}diprop\text{-}2\text{-}en\text{-}1\text{-}yl\text{-}1,3\text{-}dioxolo[4,5\text{-}e][1,3,2]dioxaphosphepin\text{-}6\text{-}amine} \ (\mathbf{17d}). \ \text{TADDOL} \ (\mathbf{1};\ 3.00\ \text{g},\ 6.42\ \text{mmol}) \ \text{was} \ \text{treated} \ \text{with} \ \text{Et}_3\text{N} \ (1.80\ \text{ml},\ 12.84\ \text{mmol}) \ \text{and} \ \text{PCl}_3 \ (0.56\ \text{ml},\ 6.42\ \text{mmol}),\ \text{and} \ \text{then} \ \text{with} \ \text{Et}_3\text{N} \ (0.90\ \text{ml},\ 6.42\ \text{mmol}) \ \text{and} \ \text{diallylamine} \ (0.79\ \text{ml},\ 6.42\ \text{mmol}) \ \text{according} \ \text{to} \ GP\ 4. \ \text{Purification} \ \text{by} \ \text{FC} \ (\text{hexane/Et}_2\text{O}\ 3:1;\ 3\text{-}4\ \text{drops} \ \text{of} \ \text{Et}_3\text{N} \ \text{added} \ \text{to} \ 100\ \text{ml} \ \text{of} \ \text{solvent}) \ \text{afforded} \ \textbf{17d} \ (2.63\ \text{g},\ 69\%). \ \text{Colorless powder}. \ \text{M.p.} \ 118\text{-}119^\circ. \ [a]_{\text{b}^1}^\circ = -123.3\ (c = 1.05,\ \text{CHCl}_3). \ \text{IR} \ (\text{CHCl3}): \ 3061m, \ 3008s, \ 1601w, \ 1494m, \ 1447m, \ 1384w, \ 1372w, \ 1166m, \ 1086m, \ 1050s, \ 1035s, \ 1018s, \ 945m, \ 882m. \ ^1\text{H-NMR} \ (300\ \text{MHz},\ \text{CDCl}_3): \ 0.28\ (s,\ \text{Me}); \ 1.34\ (s,\ \text{Me}); \ 3.44\text{-}3.88\ (m, \ 2\ \text{NCH}_2); \ 4.77\ (d,\ J=8.4,\ 1\ \text{H}); \ 5.12\text{-}5.23\ (m,\ 5\ \text{H}); \ 5.74\text{-}5.89\ (m,\ 2\ \text{H}); \ 7.15\text{-}7.80\ (m,\ 20\ \text{arom}. \ \text{H}). \ ^{13}\text{C-NMR} \ (75\ \text{MHz},\ \text{CDCl}_3): \ 25.15; \ 27.50; \ 46.94; \ 47.21; \ 81.42; \ 81.77; \ 82.13; \ 82.40; \ 82.55; \ 111.57; \ 116.85; \ 127.10; \ 127.22; \ 127.36; \ 127.52; \ 127.52; \ 127.72; \ 128.12; \ 128.87; \ 128.93; \ 129.17; \ 136.32; \ 141.83; \ 142.44; \ 146.62; \ 147.18. \ ^{31}\text{P-NMR} \ (122\ \text{MHz},\ \text{CDCl}_3): \ 141.27; \ \text{FAB-MS}: \ 591\ (12,\ M^+), \ 431\ (100), \ 373\ (21), \ 345\ (36), \ 237\ (54), \ 179\ (50). \ \text{Anal.} \ \text{calc.} \ \text{for}\ \text{C}_3\text{H}_3, \text{NO}_4\text{P} \ (591.69): C\ 75.11, H\ 6.47, N\ 2.37; \ \text{found}: C\ 75.39, H\ 6.52, N\ 2.15.$ (3aR,8aR)-Tetrahydro-2,2-dimethyl-N,N-bis(1-methylethyl)-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-dioxolo]e]/1,3,2]dioxaphosphepin-6-amine (17e). TADDOL (1; 1.50 g, 3.21 mmol) was treated with Et₃N (0.90 ml, 6.42 mmol) and PCl₃ (0.28 ml, 3.21 mmol), and then with Et₃N (0.45 ml, 3.21 mmol) and Pr₂NH (0.46 ml, 3.21 mmol) according to GP 4. Purification of the crude product (1.85 g) by FC (hexane/Et₂O 3:1; 3-4 drops of Et₃N added to 100 ml of solvent) afforded **17e** (1.61 g, 88%). For anal. purposes, a sample was recrystallized from hexane/Et₂O (15:1) at -20° . Colorless powder. M.p. $169-170^{\circ}$ ([25]: M.p. $174-175^{\circ}$). $[\alpha]_{\text{D}}^{\text{r.t.}} = -107.0 \ (c = 1.15, \text{CHCl}_3) \ ([25]: [\alpha]_{\text{D}}^{\text{r.t.}} = -83.4 \ (c = 0.7, \text{CH}_2\text{Cl}_2))$. IR (CHCl₃): 3066w, 3008w, 2970m, 2933w, 2874w, 1493w, 1459w, 1448m, 1396w, 1382w, 1364w, 1163m, 1130w, 1103w, 1085m, 1051s, 1042s, 1032m, 1006m, 982s, 918w, 878m, 819w, 652w, 636w. ¹H-NMR (300 MHz, CDCl₃): 0.24 (s, Me); 1.20 (d, J = 6.5, 2 Me); 1.25 (d, J = 6.5, 2 Me); 1.44 (s, Me); 3.98 (sept., J = 6.5, 2 NCH); 4.62(d, J = 8.7, CH); 5.21 (dd, J(H,H) = 8.7, J(H,P) = 3.4, CH); 7.17 – 7.33 (m, 12 arom. H); 7.44 – 7.49 (m, 4)arom. H); 7.64 (d, J = 7.80, 2 arom. H); 7.84 (d, J = 8.1, 2 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 24.05, 24.21, 24.27, 24.40, 25.09, 27.73, 44.11, 44.40, 80.74, 81.25, 82.30, 82.74, 83.06, 83.13, 111.00, 126.81, 126.93, 127.09, 127.16, 127.41, 127.48, 127.79, 128.71, 128.81, 129.13, 142.24, 142.99, 147.12, 147.67. ³¹P-NMR (122 MHz, CDCl₃): 141.04. FAB-MS: 1190 (11), 1189 (13), 777 (16), 747 (19), 733 (14), 718 (11), 634 (12), 618 (23), 612 (67), 608 (17), 597 (95), 596 $(100, [M+1]^+)$, 594 (88), 580 (36), 537 (66), 431 (80), 400 (97), 341 (49), 236 (69). Anal. calc. for. $C_{37}H_{42}NO_4P (595.71)$: C 74.60, H 7.11, N 2.35; found: C 74.46, H 7.25, N 2.18. NMR and MS data match those in [25]. (3aR,8aR)-N,N-Diethyltetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-amine (17f). To a soln. of PCl₃ (0.28 ml, 3.21 mmol) in toluene (5 ml) was added Et₃N (0.90 ml, 6.42 mmol) at -60° under Ar, and then a soln. of TADDOL (1; 1.50 g, 3.21 mmol) in toluene (15 ml) was added dropwise over 15 min. The mixture was stirred for further 45 min at -60° , then the cooling bath was removed, and the mixture was allowed to warm slowly to r.t. which led to the formation of a colorless precipitate. After cooling to -40° ,
Et₃N (0.45 ml, 3.21 mmol) and Et₂NH (0.33 ml, 3.21 mmol) were added consecutively. The mixture was warmed to r.t. and stirred for further 12 h at r.t. Workup according to GP 4. Purification of the crude product (1.59 g) by FC (hexane/Et₂O 3:1; 3-4 drops of Et₃N added to 100 ml of solvent) afforded **17f** (1.01 g, 57%). Colorless powder. M.p. 159 – 161°. IR (CHCl₃): 3061w, 3007m, 2934w, 2870w, 1599w, 1494m, 1447s, 1382m, 1165m, 1086s, 1052s, 1028s, 1012s, 942m, 918w, 878s, 822w, 640w. ¹H-NMR (300 MHz, CDCl₃): 0.30 (s, Me); 1.18 (t, 2 Me); 1.36 (s, Me); 3.20-3.33 (m, 2 CH₂); 4.78 (d, J = 8.7, CH); 5.21 (dd, J(H,H) = 8.7, J(H,P) = 3.4, CH); 7.18-7.37 (m, 12 arom. H); 7.45 - 7.52 (m, 4 arom. H); 7.62 (d, J = 6.9, 2 arom. H); 7.81 (d, J = 6.9, 2 arom. H). 13 C-NMR (75 MHz, CDCl₃): 15.12, 15.15, 25.13, 27.51, 38.68, 38.97, 81.14, 81.26, 81.45, 82.18, 82.45, 82.61, 82.66, 111.43, 127.01, 127.07, 127.17, 127.23, 127.30, 127.43, 127.54, 127.65, 127.91, 128.07, 128.20, 128.32, 128.85, 128.923, 129.16, 142.02, 142.62, 146.86, 147.39. ³¹P-NMR (122 MHz, CDCl₃): 142.04. FAB-MS: 569 (5), 568 (12, *M*⁺), 432 (10), 431 (29), 373 (11), 372 (24), 345 (8), 314 (16), 265 (11), 238 (26), 237 (100), 207 (16), 179 (55). (3aR,8aR)-Tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetramethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphos-tetrahydro-N,N,2,2-tetrahydro-N,N, phepin-6-amine (17g). TADDOL (1; 1.50 g, 3.21 mmol) was treated with Et₃N (0.90 ml, 6.42 mmol) and PCl₃ (0.28 ml, 3.21 mmol), and then with Et₃N (0.88 ml, 6.30 mmol), and a suspension of Me₂NH·HCl (0.36 g, 4.41 mmol) in CH₂Cl₂ (5 ml) according to GP 4. Purification of the crude product (1.62 g) by FC (hexane/CH₂Cl₂1:2; 3-4 drops of Et₃N added to 100 ml of solvent) afforded **17g** (1.24 g, 72%). For anal. purposes, a sample was recrystallized (2×) from hexane/CH₂Cl₂ (3:1) at -20° . Colorless powder. M.p. $218-221^{\circ}$ ([25a]: M.p. $>220^{\circ}$). [α]_D^{t.t.} = -161.5 (c=0.91, CHCl₃) ([25a]: [α]_D^{t.t.} = -151 (c=0.69, CHCl₃)). IR (CHCl₃): 3061w, 3039w, 3008m, 2889w, 2839w, 1600w, 1498m, 1447s, 1383m, 1372w, 1292w, 1165m, 1086m, 1050s, 1000m, 976s, 918w, 879s, 825m, 640w. ¹H-NMR (300 MHz, CDCl₃): 0.32 (s, Me); 1.30 (s, Me); 2.76 (d, J(H,P) = 10.4, 2 Me); 4.85 (d, J = 8.7, CH); 5.21 (dd, J(H,H) = 8.7, J(H,P) = 2.9, CH); 7.21 – 7.51 (m, 16 arom. H); 7.53 – 7.65 (m, 2 arom. H); 7.72 – 7.79 (m, 2 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 25.35, 27.48, 35.10, 35.48, 81.13, 81.29, 81.95, 82.11, 82.49, 111.73, 127.03, 127.13, 127.25, 127.44, 127.67, 128.08, 128.59, 128.71, 128.81, 129.00, 141.86, 142.21, 146.56, 146.90. ³¹P-NMR (122 MHz, $CDCl_3$): 140.04. FAB-MS: 540 (4, $[M+1]^+$), 432 (6), 431 (19), 289 (7), 288 (9), 267 (6), 265 (12), 238 (11), 237 (47), 207 (17), 195 (12), 191 (10), 179 (100), 178 (51). Anal. calc. for. C₃₃H₃₄NO₄P (539.62): C 73.45, H 6.35, N 2.60; found: C 73.61, H 6.38, N 2.49. NMR and MS data match those in [25a][26]. (3aR,8aR)-N,N-Dicyclohexyltetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-amine (17h). TADDOL (1; 1.50 g, 3.21 mmol) was treated with Et₃N (0.90 ml, 6.42 mmol) and PCl₃ (0.28 ml, 3.21 mmol), and then with Et₃N (0.45 ml, 3.21 mmol) and dicyclohexylamine (0.63 ml, 3.21 mmol) according to GP 4. Purification of the crude product (2.12 g) by FC (hexane/ Et₂O 3:1; 3-4 drops of Et₃N added to 100 ml of solvent) afforded 17h (1.72 g, 79%). For anal. purposes, a sample was recrystallized from hexane/Et₂O (15:1) at -20°. Colorless powder. M.p. 192-194°. $[\alpha]_{\rm b}^{\rm t.t} = -77.9 \ (c = 1.36, {\rm CHCl_3}) \ ([27]: [\alpha]_{\rm t.t}^{\rm t.t} = -60.6 \ (c = 1, {\rm CH_2Cl_2})). \ {\rm IR} \ ({\rm CHCl_3}): 3064w, 3039w, 3002w,$ 2933s, 2853s, 1599w, 1493m, 1448s, 1383m, 1372w, 1163s, 1119w, 1084m, 1077m, 1050s, 1038s, 1021s, 981s, 918w, 877s, 854w, 822m, 650w, 640w, 611w. ¹H-NMR (300 MHz, CDCl₃): 0.23 (s, Me); 1.44 (s, Me); 1.29 – $1.49 (m, 10 \text{ H}, \text{CH}_2); 1.77 - 1.89 (m, 10 \text{ H}, \text{CH}_2); 3.42 - 3.58 (m, 2 \text{ H}, \text{NCH}); 4.63 (d, J = 8.7, \text{CH}); 5.16 (dd, 5.$ J(H,H) = 8.7, J(H,P) = 3.4, CH; 7.17 – 7.33 (m, 12 arom. H); 7.45 (d, J = 7.5, 4 arom. H); 7.63 (d, J = 7.2, 2arom. H); 7.82 – 7.85 (m, 2 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 25.00, 25.51, 26.81, 26.91, 27.73, 34.94, 35.06, 35.19, 35.32, 53.57, 53.83, 80.65, 80.94, 81.13, 82.49, 82.87, 83.10, 83.16, 111.00, 126.78, 126.87, 127.10, 127.19, 127.32, 127.44, 127.54, 127.79, 128.62, 128.71, 129.03, 142.24, 142.81, 147.00, 147.51. ³¹P-NMR (122 MHz, CDCl₃): 140.99. FAB-MS: 675 (1, M⁺), 422 (5), 238 (12), 237 (61), 228 (7), 207 (12), 180 (17), 179 (100), 178 (18), 167 (37). Anal. calc. for. $C_{43}H_{50}NO_4P$ (675.86): C 76.42, H 7.46, N 2.07; found: C 76.60, H 7.53, N 1.97. Anal. data match those in [27]. $\begin{array}{l} 1\hbox{-}[(3a\mathrm{R},8a\mathrm{R})\hbox{-}Tetrahydro-2,2\hbox{-}dimethyl\hbox{-}6\hbox{-}oxido-4,4,8,8\hbox{-}tetraphenyl\hbox{-}1,3\hbox{-}dioxolo}[4,5\hbox{-}e][1,3,2]dioxaphosphepin\hbox{-}6\hbox{-}yl]piperidine} \ (\mathbf{18a}). \ Compound \ \mathbf{17a} \ (150\ \mathrm{mg}, 0.26\ \mathrm{mmol}) \ was treated with \ \mathrm{H}_2\mathrm{O}_2 \ (0.04\ \mathrm{ml}, 1.31\ \mathrm{mmol}) \ according to \ GP\ 5. \ FC \ (hexane/CH_2\mathrm{Cl}_2\ 1:3) \ afforded \ \mathbf{18a} \ (109\ \mathrm{mg}, 71\%). \ Colorless \ powder. \ ^1\mathrm{H-NMR} \ (300\ \mathrm{MHz}, \mathrm{CDCl}_3) : 0.59 \ (s, \mathrm{Me}) ; 0.76 \ (s, \mathrm{Me}) ; 1.48\ -1.53 \ (m, 3\ \mathrm{CH}_2) ; 3.01\ -3.09 \ (m, 2\ \mathrm{NCH}_2) ; 5.08 \ (d, J=8.1, \mathrm{CH}) ; 5.46 \ (d, J=8.1, \mathrm{CH}) ; 7.24\ -7.40 \ (m, 14\ \mathrm{arom.}\ \mathrm{H}) ; 7.52\ -7.59 \ (m, 6\ \mathrm{arom.}\ \mathrm{H}). \ ^{13}\mathrm{C-NMR} \ (75\ \mathrm{MHz}, \mathrm{CDCl}_3) : 24.43, 25.73, 25.83, 26.59, 26.72, 78.30, 79.60, 84.78, 84.91, 88.94, 89.10, 113.13, 126.75, 127.10, 127.44, 127.79, 127.89, 128.05, 128.62, 129.73, 140.02, 140.08, 140.33, 140.52, 144.14, 145.06, 145.19. \ ^{31}\mathrm{P-NMR} \ (122\ \mathrm{MHz}, \mathrm{CDCl}_3) : 0.65. \ \mathrm{FAB-MS} : 1193 \ (10, [2\ M]^+), 1192 \ (14), 759 \ (5), 597 \ (10), 596 \ (23, M^+), 432 \ (37), 431 \ (100), 373 \ (17), 345 \ (24), 207 \ (11), 195 \ (15), 179 \ (25). \ \end{array}$ 4-[(3aR,8aR)-Tetrahydro-2,2-dimethyl-6-oxido-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-yl]morpholine (**18b**). Compound **17b** (180 mg, 0.31 mmol) was treated with H_2O_2 (0.10 ml, 3.26 mmol) according to GP 5. Purification of the crude product by recrystallization from hexane/CH₂Cl₂ 3:1 at -20° afforded **18b** (110 mg, 59%). Colorless powder. ¹H-NMR (300 MHz, CDCl₃): 0.63 (s, Me); 0.71 (s, Me); 3.00-3.07 (m, NCH₂); 3.13-3.21 (m, NCH₂); 3.57-3.64 (m, 2 OCH₂); 5.10 (d, J = 8.4, CH); 5.48 (d, J = 8.1, CH); 7.22-7.41 (m, 12 arom. H); 7.54-7.61 (m, 8 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 26.59, 44.60, 66.81, 78.26, 79.44, 85.20, 85.28, 89.57, 89.70, 113.48, 126.86, 127.20, 127.27, 127.69, 128.07, 128.20, 128.30, 128.62, 129.82, 132.91, 139.87, 140.16, 140.30, 143.93, 145.03. ³¹P-NMR (122 MHz, CDCl₃): 0.30. (3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-N,N-bis(phenylmethyl)-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-amine 6-Oxide (**18c**). Compound **17c** (120 mg, 0.17 mmol) was treated with H₂O₂ (0.05 ml, 1.63 mmol) according to GP 5. FC (hexane/Et₂O 3:1) afforded **18c** (144 mg, 66%). Colorless powder. ¹H-NMR (300 MHz, CDCl₃): 0.60 (s, Me); 0.80 (s, Me); 4.07 (dd, J(H,H) = 12.1, J(H,P) = 4.7, 2 CH₂); 5.13 (d, J = 8.1, CH); 5.65 (d, J = 8.1, CH); 7.17 – 7.46 (m, 26 arom. H); 7.58 – 7.61 (m, 2 arom. H); 7.74 – 7.77 (m, 2 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 26.46, 26.75, 48.64, 78.02, 79.35, 85.67, 85.75, 89.40, 89.51, 113.26, 127.17, 127.23, 127.35, 127.56, 127.64, 127.99, 128.09, 128.40, 128.66, 128.92, 130.03, 137.44, 137.47, 140.29, 144.09, 144.90. ³¹P-NMR (122 MHz, CDCl₃): 2.38. (3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-N,N-diprop-2-en-1-yl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-amine 6-Oxide (**18d**). Compound **17d** (70 mg, 0.12 mmol) was treated with
H_2O_2 (0.04 ml, 1.31 mmol) according to GP 5. FC (hexane/Et₂O 3:1) afforded **18d** (52 mg, 72%). Colorless powder. ¹H-NMR (300 MHz, CDCl₃): 0.60 (s, Me); 0.75 (s, Me); 3.54 – 3.62 (m, 2 NCH₂); 5.05 (d, J = 8.1, CH); 5.09 – 5.20 (m, 2 CH₂); 5.49 (d, J = 8.1, CH); 5.68 – 5.79 (m, 2 CH); 7.19 – 7.39 (m, 12 arom. H); 7.49 – 7.66 (m, 8 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 26.59, 26.81, 48.08, 78.24, 79.41, 85.21, 85.32, 89.25, 89.46, 113.13, 117.51, 126.90, 127.10, 127.32, 127.48, 127.86, 127.98, 128.08, 128.78, 129.92, 134.43, 140.11, 140.52, 144.17, 145.00. ³¹P-NMR (122 MHz, CDCl₃): 2.00. (3aR,8aR)-Tetrahydro-2,2-dimethyl-N,N-bis(1-methylethyl)-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-amine 6-Oxide (18e). Compound 17e (70 mg, 0.12 mmol) was treated with H_2O_2 (0.04 ml, 1.31 mmol) according to GP 5. FC (hexane/Et₂O 3:1) afforded 18e (61 mg, 85%). Colorless powder. ¹H-NMR (300 MHz, CDCl₃): 0.57 (s, Me); 0.81 (s, Me); 1.15 (d, J = 6.9, Me); 1.23 (d, J = 6.9, Me); 3.35 – 3.47 (m, 2 NCH); 5.07 (d, J = 8.1, CH); 5.52 (d, J = 8.1, CH); 7.18 – 7.38 (m, 12 arom. H); 7.51 – 7.70 (m, 6 arom. H); 7.71 – 7.73 (m, 2 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 21.95, 22.30, 26.35, 26.77, 46.57, 78.26, 79.62, 84.86, 84.93, 88.58, 88.72, 112.80, 127.12, 127.18, 127.44, 127.72, 127.83, 127.90, 127.98, 128.50, 130.06, 140.58, 140.82, 140.97, 144.80, 145.59. ³¹P-NMR (122 MHz, CDCl₃): -0.04. FAB-MS: 1224 (2, [2 M]+), 613 (28), 612 (67, M+), 432 (35), 431 (100), 373 (19), 346 (15), 345 (31), 265 (17), 237 (18), 207 (30), 195 (32), 179 (50). (3aR,8aR)-N,N-Diethyltetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-amine 6-Oxide (18f). Compound 17f (100 mg, 0.18 mmol) was treated with H₂O₂ (0.05 ml, 1.63 mmol) according to GP 5. FC (hexane/Et₂O 3:1) afforded 18f (82 mg, 80%). Colorless powder. M.p. 194–195°. [a] $_{\text{B}}^{\text{L}}$ = -229.7 (c = 1.00, CHCl₃). IR (CHCl₃): 3050w, 3008w, 2935w, 1601w, 1448w, 1382w, 1364w, 1259w, 1167w, 1092w, 1064w, 1034w, 1019s, 960w, 916 w, 832w, 824w, 640w, 629w, 619w. ¹H-NMR (300 MHz, CDCl₃): 0.61 (s, Me); 0.75 (s, Me); 1.05 (t, t = 7.5, 2 Me); 3.08 (t t = 6.5, 2 NCH); 5.11 (t t = 8.3, CH); 5.52 (t t = 8.3, CH); 7.20 – 7.39 (t t 4 arom. H); 7.50 – 7.57 (t t 4 arom. H); 7.64 – 7.73 (t t 2 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 13.96, 26.53, 26.72, 39.89, 39.95, 78.23, 79.48, 84.22, 84.93, 89.01, 89.04, 113.08, 127.01, 127.14, 127.17, 127.39, 127.49, 127.85, 127.93, 128.04, 128.07, 128.85, 130.08, 140.43, 140.71, 140.85, 144.53, 145.36, 145.47. 31 P-NMR (122 MHz, CDCl₃): 2.34. Anal. calc. for. $C_{35}H_{38}NO_5P$ (583.65): C 72.03, H 6.56, N 2.40; found: C 72.11, H 6.57, N 2.34. (3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin 6-Oxide (19). To a soln. of TADDOL (1; 1.00 g, 2.14 mmol) in Et₂O (30 ml) was added pyridine (0.36 ml, 4.46 mmol) at -15° , and then PCl₃ (0.19 ml, 2.14 mmol) was added dropwise over 15 min. The mixture (which contained a colorless precipitate) was slowly warmed to r.t. (ca. 1 h) and stirred for further 2 h at r.t. Sat. aq. NaCl soln. (50 ml) and sat. aq. NaHCO3 soln. (20 ml) were added, the org. layer was separated, and the aq. layer was extracted with Et₂O (2×30 ml). The combined org. layers were dried (MgSO₄) and concentrated under reduced pressure. The crude product was purified by FC (hexane/ CH₂Cl₂ 1:3) to afford 19 (0.89 g, 81%). For anal. purposes, a sample was recrystallized from pentane/ Et_2O 1:5 at -20° . Colorless powder. M.p. $181-183^\circ$ ([25a]: M.p. $226-227^\circ$ (dec.)). [α] $_{\rm B}^{\rm t.t} = -299.16$ $(c = 1.07, \text{ CHCl}_3; [25a]; [\alpha]_D^{\text{r.t.}} = -289.9 \ (c = 1.56, \text{ CHCl}_3)). \text{ IR (CHCl}_3): 3064w, 3008m, 2937w, 1600w,$ 1496m, 1448s, 1384w, 1374w, 1354w, 1270s, 1167m, 1092s, 1073s, 1054s, 1035m, 982s, 955s, 900w, 857w, 654w, 641w. 1 H-NMR (200 MHz, CDCl₃): 0.68 (s, Me); 0.88 (s, Me); 1.36 (d, J = 5.3, OH); 5.23 (d, J = 8.1, CH); 5.38 (d, J = 8.1, CH); 7.26 – 7.45 (m, 16 arom. H); 7.59 – 7.64 (m, 4 arom. H). ¹³C-NMR (50 MHz, CDCl₃): 26.18, 26.65, 79.73, 79.98, 80.05, 88.56, 88.71, 114.30, 126.71, 126.81, 127.29, 127.44, 127.83, 127.92, 128.14, 128.24, 128.40, 128.62, 128.75, 138.84, 139.00, 139.19, 143.13, 143.57. ³¹P-NMR (122 MHz, CDCl₃): -3.92. FAB-MS: 1027 (16), 1026 (26), 513 (1, M^+), 432 (40), 431 (100), 345 (18), 265 (11), 237 (59), 207 (44), 179 (79). Anal. calc. for C₃₁H₂₉O₅P (512.55): C 72.65, H 5.70, P 6.04; found: C 72.60, H 5.88, P 5.93. Anal. data match those in [25a]. (3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-6-[(3aR,8aR)-tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-yl]-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin 6-Oxide (20). To a soln. of TADDOL (1; 2.32 g, 4.96 mmol) and Et₃N (1.40 ml, 9.99 mmol) in CH₂Cl₂ (40 ml) under Ar at -50° was added slowly (15 min) PCl₃ (0.43 ml, 4.93 mmol). After warming up to -20° (100 min) and recooling to -50° , again Et₃N (0.68 ml, 4.85 mmol) and phenothiazin (0.97 g, 4.87 mmol) were added. After warming up to r.t., the mixture was stirred for further 72 h at r.t. During this period, a brownish precipitate was formed. For workup, the mixture was diluted with CH₂Cl₂ (100 ml), washed with sat. NaCl (50 ml) and sat. NaHCO₃ (5 ml), dried (MgSO₄), and the solvent was removed under reduced pressure. Purification by FC (CH₂Cl₂, 1% Et₃N) afforded **20** (231 mg, 9%). Colorless powder. M.p. 171 – 173. IR (CHCl₃): 3061w, 3008m, 1600w, 1495m, 1448s, 1384m, 1377w, 1252s, 1165m, 1093m, 1086m, 1047w, 1030m, 997s, 919m, 878m, 838w, 641w. ¹H-NMR (300 MHz, CDCl₃): 0.21 (s, Me); 0.59 (s, Me); 0.95 (s, Me); 1.58 (s, Me); 4.71 (d, J = 8.30, CH); 5.25 (d, J = 7.89, CH); 5.43 (quint., J = 8.30, CH); 5.25 (d, J = 7.89, CH); 5.43 (quint., J = 8.30, CH); 5.25 (d, J = 7.89, CH); 5.43 (quint., J = 8.30, CH); 5.25 (d, J = 7.89, CH); 5.43 (quint., J = 8.30, CH); 5.45 (quint., J = 8.30, CH); 5.45 (quint., J = 8.30, CH); 5.47 (quint., J = 8.30, CH); 5.48 (quint., J = 8.30, CH); 5.49 5.40 CH)J(H,H) = 8.30, J(H,P) = 4.15, J(H,P) = 3.73, CH); 5.63 (d, J = 7.89, CH); 7.25 – 7.42 (m, 24 arom. H); 7.48 – 7.87 (m, 16 arom. H). ¹³C-NMR (75 MHz, CDCl₃): 24.56, 26.33, 27.03, 27.73, 80.02, 80.11, 80.27, 83.03, 83.45, 80.60, 83.70, 84.05, 84.15, 84.24, 84.38, 84.70, 86.87, 87.16, 91.51, 91.88, 112.02, 113.64, 126.46, 127.16, 127.25, 127.38, 127.63, 127.73, 127.86, 128.02, 128.14, 128.33, 128.71, 129.25, 129.98, 139.31, 139.41, 139.50, 140.05, 140.46, 143.98, 144.33, 144.41, 144.87, 145.03, 145.73. 31P-NMR (122 MHz, CDCl₃): 157.96 (d, J(P, P) = 189.98), 13.51 (d, J(P, P) = 189.98). FAB-MS: 1616 (1), 1552 (1), 1125 (1), 1024 (1), 1007 (1, M^+), 432 (39), 431 (100), 373 (15), 345 (21), 237 (26). MALDI-MS: 1029.6 ($[M + Na]^+$), 1045.6 ($[M + Na]^+$) $O + Na^+$, 1061.7 ([$M + O + K^+$]). (3aR,8aR)-Tetrahydro-2,2,6-trimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin 6-Oxide (21a). To a soln. of TADDOL (1; 2.33 g, 5.0 mmol) in THF (20 ml) was added BuLi (6.88 ml, 11.0 mmol) at −78°. The soln. was warmed to r.t. and stirred for 1 h, then cooled to −78° again, and MeP(O)Cl₂ (0.55 ml, 6.0 mmol) was added. The mixture was warmed to r.t. and stirred for 3.5 h. The solvent was removed under reduced pressure, and the residue purified by FC (hexane/EtOAc 2:1 → 1:1) to afford 21a (2.54 g, 96%). Colorless solid. M.p. 240−242°. [α]₁₀ = −287.5 (c =0.76, CHCl₃). IR (CHCl₃): 3002m, 1495m, 1448m, 1373m, 1313m, 1166m, 1090m, 1056s, 1009m, 942s, 902m, 641m. ¹H-NMR (400 MHz, CDCl₃): 0.58 (s, Me); 0.65 (s, Me); 1.46 (d, J =18.1, MeP); 5.21 (d, J =8.0, CH); 5.51 (d, J = 8.0, CH); 7.21−7.41 (m, 14 arom. H); 7.46−7.49 (m, 2 arom. H); 7.54−7.61 (m, 4 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 13.2; 14.7; 26.6 (d, J =5.2); 79.1 (d, J =2.3); 79.7 (d, J =2.2); 87.2 (d, J =8.6); 88.7 (d, J =10.7); 114.2; 126.8; 127.08; 127.14; 127.2; 127.58; 127.61; 128.18; 128.22; 128.3; 128.4; 129.2; 139.77; 139.82; 139.84; 140.0; 143.4; 144.16; 144.19. ³¹P-NMR (162 MHz, CDCl₃): 22.2. MALDI-FT-ICR-MS: 549.2 (72, $[M + Na]^+$), 431 (70), 345 (77), 267 (82), 105 (100). Anal. calc. for $C_{32}H_{31}O_5P$ (526.57): C 72.99, H 5.93; found: C 73.01, H 6.12. (3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-6-(phenylmethyl)-1,3-dioxolo[4,5-e][1,3, 2]dioxaphosphepin 6-Oxide (21b). To a soln. of TADDOL (1; 1.87 g, 4.0 mmol) in THF (16 ml) was added BuLi (5.50 ml, 8.8 mmol) at -78° . The soln. was warmed to r.t. and stirred for 1 h, then cooled to -78° again, and a soln. of BnP(O)Cl₂ (1.05 g, 5.0 mmol) in THF (4 ml) was added. The mixture was warmed to r.t. and stirred for 3 h. The mixture was diluted with AcOEt, the org. layer was washed with sat. aq. NaHCO₃ soln. (2 ×) and sat. aq. NaCl soln., dried (MgSO₄), filtered, and the solvent was removed under reduced pressure. Recrystallization of the residue from hexane/AcOEt afforded **21b** (1.58 g, 66%). Colorless solid. M.p. $245-246^{\circ}$. [α]_D^{r.t} = -220.1 (c=0.84, CHCl₃). IR (CHCl₃): 3063w, 3003m, 1495m, 1448m, 1373m, 1271m, 1166m, 1090m, 1055s, 1042s, 996s, 939m, 924m, 882w, 641w. ¹H-NMR (400 MHz, $CDCl_3$): 0.46 (s, Me); 0.77 (s, Me); 3.21 – 3.36 (m, CH₂); 4.95 (d, J = 8.0, CH); 5.46 (d, J = 8.0, CH); 6.86 – 6.89 (m, 2 arom. H); 7.05 - 7.08 (m, 2 arom. H); 7.11 - 7.31 (m, 12 arom. H); 7.32 - 7.42 (m, 7 arom. H);7.50 - 7.65 (m, 2 arom. H). 13 C-NMR (100 MHz, CDCl₃): 26.4; 26.9; 35.6 (d, J = 146.5); 78.9 (d, J = 2.6); 79.4(d, J = 2.5); 86.1(d, J = 8.4); 90.3(d, J = 13.1); 113.5; 126.58; 126.64; 127.0; 127.1; 127.2; 127.4; 127.56; 127.59; 128.0; 128.05; 128.06; 128.10; 128.29; 128.32; 128.7; 129.9; 130.0; 131.7; 131.8; 139.72; 139.73; 139.8; 139.9; 143.7; 144.66; 144.73. ³¹P-NMR (162 MHz, CDCl₃): 19.9. MALDI-FT-ICR-MS: 625.2 (56, $[M + Na]^+$, 431 (33), 345 (48), 273 (65), 267 (58), 195 (100), 105 (52). Anal. calc. for $C_{38}H_{35}O_5P$
(602.67): C 75.73, H 5.85; found: C 75.77, H 5.87. *Methyl* (3aR,8aR)-*Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-acetate 6-Oxide* (**22**). To a soln. of **21a** (263 mg, 0.50 mmol) in THF (10 ml) was added BuLi (1.25 ml, 2.0 mmol) at −78°, and the mixture was stirred for 3.5 h. At the same temp., NCCOOMe (0.16 ml, 2.0 mmol) was added, and stirring continued for another 1 h before quenching the reaction with H₂O. The mixture was diluted with AcOEt, the org. layers were washed with sat. aq. K₂CO₃ soln. (2 ×) and sat. aq. NaCl soln., dried (MgSO₄), filtered, and the solvent was removed under reduced pressure. FC of the residue (hexane/AcOEt 3:1 → 1:1) afforded **22** (134 mg, 46%). Colorless glass. [a]_D^{1,1} = −244.0 (c = 0.77, CHCl₃). IR (CHCl₃): 3007m, 1740s, 1496m, 1448m, 1384m, 1273s, 1167m, 1117m, 1089m, 1055s, 1040s, 1010s, 942m, 642m. ¹H-NMR (400 MHz, CDCl₃): 0.57 (s, Me); 0.75 (s, Me); 3.00 – 3.19 (m, CH₂); 3.35 (d, J = 0.5, MeO); 5.22 (d, J = 7.9, CH); 5.49 (d, J = 7.9, CH); 7.22 – 7.40 (m, 14 arom. H); 7.46 – 7.61 (m, 6 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 26.5; 26.9; 36.0 (d, J = 146.0); 52.2; 79.0 (d, J = 2.5); 79.5 (d, J = 7.9); 91.0 (d, J = 11.9); 114.1; 126.7; 127.2; 127.3; 127.70; 127.73; 128.1; 128.18; 128.23; 128.7; 129.6; 139.42; 139.44; 139.5; 139.7; 143.4; 144.07; 144.13; 165.6; 165.7. ³¹P-NMR (162 MHz, CDCl₃): 12.6. MALDI-FT-ICR-MS: 607.2 (31, 10 + Na]+), 431 (18), 345 (16), 267 (16), 105 (17). (3aR,8aR)-6-Chlorotetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin 6-Oxide (**23**). To a soln. of TADDOL (**1**; 2.33 g, 5.0 mmol) in THF (25 ml) was added BuLi (6.88 ml, 11.0 mmol) at −78°. The mixture was warmed to r.t. and stirred for 1 h, then again cooled to −78° before addition of POCl₃ (0.60 ml, 6.50 mmol). The mixture was stirred for 3 h at −78°, the reaction was quenched with sat. aq. NaHCO₃ soln., and the mixture was diluted with Et₂O. The org. layer was washed with sat. aq. NaHCO₃ soln. (2 ×) and sat. aq. NaCl soln., dried (MgSO₄), filtered, and the solvent was removed under reduced pressure. The residue was purified by recrystallization from hexane/AcOEt to afford **23** (1.37 g, 50%). Colorless solid. M.p. 134° (dec.). [a] $_{c}^{bL}$ = −319.9 (c = 0.67, CHCl₃). IR: 3008m, 1496m, 1448m, 1374m, 1293s, 1167m, 1089m, 1055m, 1036s, 1019s, 998s, 654m, 641m. ¹H-NMR (400 MHz, CDCl₃): 0.58 (s, Me); 0.64 (s, Me); 5.33 (d, d =7.9, CH); 5.38 (d, d =7.9, CH); 7.25 −7.44 (m, 16 arom. H); 7.56 −7.61 (m, 4 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 26.5 (Me); 26.6 (Me); 78.6, 79.4, 91.6 (d, ²d(C,P) = 10.8); 92.5 (d, ²d(C,P) =9.3); 115.1 (C); 126.6, 127.3, 127.5, 127.5, 128.1, 128.1, 128.3, 128.4, 128.5, 128.8, 128.8, 128.9, 138.6 (d, ³d(C,P) = 11.4, C); 138.8 (d, ³d(C,P) = 10.6, C); 141.4 (C); 142.1 (C). ³¹P-NMR (162 MHz, CDCl₃): −9.1. ESI-MS (pos.): 564 (100, [M + NH₄] $^+$). ESI-MS (neg.): 577 (100, [M + MeO] $^-$). Anal. calc. for C₃₁H₂₈O₃PCl (546.99): C 68.07, H 5.16; found: C 68.03, H 5.34. (3aR,8aR)-Tetrahydro-6-methoxy-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin 6-Oxide (24). To a soln. of 23 (820 mg, 1.5 mmol) in THF (30 ml) was added a soln. of MeONa (160 mg, 3 mmol) in MeOH (5 ml). After stirring for 1 d at r.t., sat. aq. NaHCO₃ soln. was added, the org. layer was separated, and the aq. layer was extracted with CH₂Cl₂. The combined org. layers were washed with sat. aq. NaCl soln., dried (MgSO₄), and concentrated under reduced pressure to afford **24** (800 mg, 98%). White foam. M.p. $176-179^{\circ}$. [α]_D^{1.1} = -235.5 (c=0.52, CHCl₃). IR (CHCl₃): 3008m, 1496m, 1448s, 1384m, 1380m, 1279s, 1167m, 1037s, 1021s, 941m, 901m, 640m. ¹H-NMR (400 MHz, CDCl₃): 0.58 (s, Me); 0.73 (s, Me); 3.34 (d, J=11.8, MeO); 5.25 (d, J=8.1, CH); 5.32 (d, J=8.1, CH); 7.23-7.42 (m, 16 arom. H); 7.54-7.58 (m, 4 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 26.4; 26.7; 26.4; 26.7; 26.4; 26.7; 26.4; 26.7; 26.6; 26.7; 26.6; 26.7; 26.8; 2 Sodium (3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-olate 6-Oxide (**25**). To a soln. of **23** (0.5 g, 0.91 mmol) in THF (20 ml) were added H₂O (10 ml) and NaOH (91 mg, 2.3 mmol). After stirring for 10 h at r.t., the solvent was removed under reduced pressure, and then the residue was dissolved in AcOEt. The soln. was filtered and concentrated under reduced pressure to afford, after drying under h.v., **25** (490 mg, 97%). Colorless solid. M.p. 329 – 330° (dec.). [α] $_{\rm D}^{\rm id}$ = -153.2 (c = 1.05, MeOH). IR (KBr): 3059w, 2989w, 2935w, 1636.3br. m, 1495s, 1447s, 1382m, 1372m, 1240br. s, 1166s, 1082s, 1057s, 1022s, 899s, 858w, 804w, 743s, 699s, 592m, 549s. $^{\rm id}$ H-NMR (400 MHz, CD₃OD): 0.68 (s, Me); 5.30 (s, CH); 7.16 – 7.29 (m, 12 arom. H); 7.53 – 7.56 (m, 8 arom. H). $^{\rm id}$ C-NMR (100 MHz, CD₃OD): 27.0 (Me); 82.1 (CH); 84.8 (d, 2 J (C,P) = 6.6), 113.0 (C); 127.9, 128.0, 128.08, 128.13, 128.4, 128.7, 130.4 (CH); 143.4, 143.5, 147.4, 147.5 (C). $^{\rm id}$ P-NMR (120 MHz, CD₃OD): –7.57. MALDI-FT-ICR-MS: 573.1 (46, [M + Na] $^+$); 381.2 (100), 345.2 (44), 273.0 (94), 267.1 (92), 105.0 (51). ESI-MS (neg.): 527.2 [M – Na] $^-$. $(3a\text{R},8a\text{R},3'a\text{R},8'a\text{R})\text{-}6,6'\text{-}Oxybis[tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxaphosphepin]} 6,6'\text{-}Dioxide} (\textbf{26}). Compound \textbf{23} (125 mg, 0.23 mmol) and \textbf{25} (126 mg, 0.23 mmol) were dissolved in THF (2 ml), and the mixture was stirred for 3 d. The soln. (which contained a fine precipitate) was concentrated under reduced pressure, and the residue was recrystallized from CH₂Cl₂/hexane by slow evaporation of the solvent to afford$ **26**(170 mg, 72%). Colorless needles. M.p. 215 – 218°. [<math>a] $_{\text{b}}^{\text{1}} = -266.9 \ (c = 1.05, \text{ CHCl}_3)$. IR (CHCl₃): 3066w, 3008m, 2927m, 1496m, 1448m, 1394w, 1309s, 1167w, 1096m (br.), 1020s, 961s, 902w. $^{\text{1}}$ H-NMR (400 MHz, CDCl₃): 0.46 (s, Me); 0.74 (s, Me); 5.28 (d, J=8.0, CH); 5.32 (d, J=8.0, CH); 7.22 – 7.30 (m, 12 arom. H); 7.37 – 7.45 (m, 6 arom. H); 7.51 – 7.53 (m, 2 arom. H). 13 C-NMR (100 MHz, CDCl₃): 26.1, 26.8 (Me); 79.2, 79.4 (CH); 89.4 (d, 2 J(C,P) = 2.6), 90.0 (d, 2 J(C,P) = 4.3), 114.2 (C); 127.0, 127.2, 127.3, 127.5, 127.7, 127.8, 128.1, 128.3, 128.40, 128.41, 128.8, 128.9 (CH); 139.1, 142.1, 142.4 (C). 31 P-NMR (162 MHz, CDCl₃): -24.99. HR-MS: 1061.3193 ([M + Na] $^{+}$, C_{62} H₅₆NaO₁₁P₂; calc. 1061.3196 (-0.28 ppm)). MALDI-FT-ICR-MS: 1061.3 (10, [M + Na] $^{+}$); 431.2 (97), 345.2 (65), 273.0 (100), 200.9 (63). Anal. calc. for C_{62} H₅₆O₁₁P₂ (1039.05): C 71.67, H 5.43; found: C 71.23, H 5.65. 6. Products **31, 32, 34, 36–41** of Experiments Aimed at Preparation of C,P-Derivatives. (3R)-3-(2,2-Diphenylethenyl)-2,2-diphenyloxirane (**31**). To a suspension of **3** in DMF (15 ml) under Ar, LiPH₂ (0.14g, 3.51 mmol) was added. The dark brown mixture was stirred for 10 min at r.t., 15 h at 80°, and again at r.t. for 13 h, then H₂O (degassed, 30 ml) and Et₂O (60 ml) were added. The org. layer was washed with aq. NaCl soln. and dried (Na₂SO₄), the solvent was removed under reduced pressure to afford **31** (0.32 g, 86%), which was recrystallized from acetone at -20° . Colorless powder. [α]₅: =-35.8 (c=1.25, CHCl₃). IR (CHCl₃): 3083w, 3062m, 3008s, 1952w, 1893w, 1812w, 1658w, 1600m, 1495s, 1447s, 1319w, 1280w, 1075m, 1030m, 941w, 910w, 628m. ¹H-NMR (200 MHz, CDCl₃): 3.91 (d, J=8.72, CH); 5.52 (d, J=8.27, CH); 7.09-7.56 (m, 20 arom. H). ¹³C-NMR (50 MHz, CDCl₃): 64.24, 68.24, 124.02, 126.84, 127.16, 127.25, 127.70, 127.76, 127.86, 127.95, 128.14, 128.27, 128.36, 128.75, 130.14, 130.71, 137.57, 138.84, 140.71, 141.53, 148.40. FAB-MS: 374 (1, M^+), 372 (2), 358, (7), 344 (16), 270 (25), 269 (100), 191 (73). Anal. data match those of rac-**31** in [35]. 1,1',1'',1'''-(Buta-1,3-diene-1,4-diylidene) tetrakisbenzene (32). At r.t. in an autoclave (7 ml) under Ar, 3 (2.05g, 4.07 mmol) and ZnCl₂· Et₂O (2 ml, 2.00 mmol) were mixed and cooled to -196° . PH₃ Gas was condensed in (4 × ca. 20 ml each, 20 bar), and the temp. was allowed to rise to r.t. within 3 h (12 bar); after further 16 h at r.t., the temp. was increased to 90° for 2 h (130 bar) and then kept at 70° for 16 h (70 bar). After flushing several times with N₂, the yellow suspension was washed with Et₂O (10 ml), CH₂Cl₂ (10 ml), H₂O (20 ml), and Et₂O (50 ml) to afford 32 (1.16 g, 80%). ¹H-NMR (200 MHz, CDCl₃): 6.80 (s, 2 CH); 7.15–7.27 (m, 10 arom. H); 7.30–7.44 (m, 10 arom. H). (3aR,8aR)-Tetrahydro-2,2-dimethyl-4,4,8,8-tetraphenyl-1,3-dioxolo[4,5-e][1,3,2]dioxathiepin 6,6-Dioxide (34). Compound 33 [3] (3.05 g, 5.95 mmol) was dissolved in CCl₄/MeCN/H₂O (8:8:12 ml), and the mixture was cooled to 0°. NaIO₄ (2.60 g, 12.2 mmol) and RuCl₃ (15 mg,
0.07 mmol) were added, and the mixture was stirred at 0° for 6.5 h. CH₂Cl₂ (10 ml) was added, and the phases were separated. The aq. layer was extracted with CH2Cl2, and the combined org. layers were washed with ice-cooled H2O and sat. aq. NaCl soln., and dried (Na2SO4). The solvent was removed under reduced pressure to afford 34 (2.97 g, 95%) as black solid foam (pure according to ¹H-NMR). To remove the color, the product was dissolved in CH₂Cl₂ (30 ml), charcoal (ca. 5 g) was added, and the mixture was stirred for 1 h at r.t. After filtration through Celite, the resulting orange soln. was concentrated under reduced pressure, where upon crystallization occurred. Trituration of the beige solid with Et₂O (15 ml) for 2 h afforded 34 (2.55 g, 81%). Colorless solid. Caution: Sulfate 34 is very prone to hydrolysis on a TLC plate. It should be stored at -18° . M.p. $>95^{\circ}$ (dec.). $[\alpha]_{\rm D}^{\rm r.t} = -67.5$ (c = 1.1, CHCl₃). IR (CHCl₃): 3062w, 2995w, 2941w, 1600w, 1496m, 1448m, 1407s, 1385m, 1375w, 1165m, 1090m, 1052w, 1029w, 976m, 958m, 881s. ¹H-NMR (400 MHz, CDCl₃): 0.87 (s, 2 Me); 5.42 (s, 2 CH); 7.27 – 7.37 (m, 12 arom. H); 7.43 – 7.47 (m, 4 arom. H); 7.54 – 7.58 (m, 4 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 26.00 (Me); 80.17 (CH); 92.35, 111.97 (C); 126.90, 127.84, 128.29, 128.36, 128.45, 128.56 (CH); 137.78, 142.10 (C). ESI-MS (pos.): 1625 (4, [3 M + $(K+2)^+$, $(K+2)^+$, $(K+2)^+$, $(K+2)^+$), $NH_4|^+$), 592 (18, $[M + MeCN + Na]^+$), 494 (8, $[M - SO_4 - 2 + MeCN + Na]^+$), 431 (14, $[M - SO_4 - 2 + MeCN + Na]^+$), 431 (14, $[M - SO_4 - 2 + MeCN + Na]^+$) 2]⁺). ESI-MS (neg.): 559 (8, $[M + H_2O + OH]^-$), 545 (100, $[M + OH]^-$), 527 (2, $[M - 1]^-$). Anal. calc. for C₃₁H₂₈O₆S (528.62): C 70.44, H 5.34, S 6.07; found: C 70.33, H 5.45, S 6.03. (3aR,7aR)-Tetrahydro-6-methoxy-2,2-dimethyl-4,4,7,7-tetraphenyl-4H-1,3-dioxolo[4,5-d][1,2]oxaphosphorin 6-Oxide (36). Compound 3 (500 mg, 0.99 mmol) was treated with P(OMe)₃ (2 ml, 17 mmol) in DMF (4 ml) at 120° according to GP 6. FC (SiO₂ (60 g); pentane/Et₂O 3:2) afforded 36 (170 mg, 32%). Colorless solid. M.p. 227 – 229°. $R_{\rm f}$ (hexane/AcOEt 2:1) 0.35. $[\alpha]_{\rm fi}^{\rm r.t} = -$ 122.0 (c = 1.05, CHCl₃). IR (CHCl₃): 3450w (br.), 3063w, 3007m, 2955w, 1600w, 1495m, 1448m, 1384m, 1375m, 1258s, 1171m, 1128m, 1095s, 1077m, 1056s, 985s, 947m, 926m, 912m, 892w, 874w. 1H-NMR (400 MHz, CDCl₃): 0.79 (s, Me); 1.69 (s, Me); 2.87 $(d, {}^{3}J(H,P) = 10.9, Me)$; 4.24 $(dd, J = 10.0, {}^{4}J(H,P) = 0.7, CH)$; 5.33 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.35 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.37 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.38 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.31 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.32 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.33 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.31 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.32 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.33 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.33 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.34 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.35 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.37 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.38 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.39 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}^{3}J(H,P) = 0.7, CH)$; 5.30 $(dd, J = 10.0, {}$ 1.2, CH); 7.16 - 7.35 (m, 12 arom. H); 7.47 - 7.53 (m, 4 arom. H); 7.56 - 7.60 (m, 2 arom. H); 7.87 - 7.91 (m, 2 arom. H). 13 C-NMR (100 MHz, CDCl₃): 25.88, 27.38, 53.53 (d, $^{2}J(C,P) = 8.0$) (Me); 58.83 (d, $^{1}J(C,P) = 8.0$) 117.8) (C); 75.49 (d, J(C,P) = 2.6), 80.79 (d, J(C,P) = 5.4) (CH); 85.85 (d, ${}^{2}J(C,P) = 8.4$), 111.58 (C); 125.29, 126.81, 126.99, 127.02, 127.11, 127.39, 127.53, 127.55, 127.62, 127.99, 128.09, 128.11, 129.13, 129.19, 132.19, 132.29 (CH) (C,P couplings!); 137.36 (d, J(C,P) = 2.3), 139.57 (d, J(C,P) = 8.9), 140.24, 144.31 (d, J(C,P) = 8.7) (C). ³¹P-NMR (121 MHz, CDCl₃): 21.26. MALDI-FT-ICR-MS: 549.2 (24, $[M + Na]^+$), 491.1 (7), 469.2 (11), 455.2 (19), 451.1 (17), 437.2 (18), 431.2 (20), 397.2 (88), 373.2 (41), 355.1 (100). HR-MS: 549.1774 ($[M+Na]^+$, $C_{32}H_{31}NaO_5P^+$; calc. 549.1801 (-4.9 ppm)). Anal. calc. for $C_{32}H_{31}O_5P$ (526.57): C 72.99, H 5.93; found: C 72.97, H 6.13. (3aR,6R,7aR)- and (3aR,6S,7aR)-Tetrahydro-2,2-dimethyl-4,4,6,7,7-pentaphenyl-4H-1,3-dioxolo[4,5-d][1,2]oxaphosphorin 6-Oxide ((R_P)-37 and (S_P)-37, resp.). Compound 3 (250 mg, 0.50 mmol) was treated with PhP(OMe)₂ (0.4 ml, 2.52 mmol) in DMF (4 ml) at 120° according to GP 6. FC (SiO₂ (20 g); pentane/Et₂O 8:2 \rightarrow Et₂O) afforded (R_P)-37 (61 mg, 22%) and (S_P)-37 (35 mg, 12%). Colorless solids. Data of (R_P) -37. M.p. 208 – 210°. R_f (hexane/AcOEt 2:1) 0.37. $[a]_{10}^{1.1} = -189.9$ (c = 1.04, CHCl₃). IR (CHCl₃): 3404br. w, 3064w, 2991m, 2935w, 1599w, 1495m, 1448m, 1438w, 1384m, 1374w, 1170m, 1126m, 1108s, 1094s, 1036w, 1005s, 989s, 935w, 924w, 905m, 865m. ¹H-NMR (400 MHz, CDCl₃): 0.62 (s, Me); 1.58 (s, Me); 4.91 (dd, J = 10.0, J(H,P) = 0.6, CH); 5.49 (dd, J = 10.0, J(H,P) = 0.8, CH); 6.85 – 7.13 (m, 8 arom. H); 7.16 – 7.40 (m, 11 arom. H); 7.61 – 7.66 (m, 4 arom. H); 7.69 – 7.75 (m, 2 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 25.77, 27.41 (Me); 61.75 (d, ¹J(C,P) = 73.2) (C); 76.29 (d, J(C,P) = 7.1), 80.23 (d, J(C,P) = 7.8) (CH); 87.46 (d, ²J(C,P) = 10.3), 112.15 (C); 125.46, 126.81, 126.85, 126.88, 126.91, 127.04, 127.17, 127.67, 127.91, 127.95, 128.11, 128.35, 129.54, 129.61, 130.95, 130.98, 131.95, 132.05, 133.46, 133.53 (CH) (C,P couplings!); 130.81 (d, ¹J(C,P) = 138.4), 138.28 (d, J(C,P) = 4.1), 140.26 (d, J(C,P) = 2.3), 140.68 (d, J(C,P) = 3.4), 145.03 (d, J(C,P) = 4.1) (C). ³¹P-NMR (121 MHz, CDCl₃): 37.90. MALDI-FT-ICR-MS: 611.2 (3, $[M + K]^+$), 595.2 (26, $[M + Na]^+$), 455.2 (10), 431.2 (13), 397.2 (100), 357.2 (9), 330.1 (49), 321.1 (16). HR-MS: 595.1981 ($[M + Na]^+$, $C_{37}H_{33}NaO_4P^+$; calc. 595.2008 (-4.5 ppm)). Anal. calc. for $C_{37}H_{33}O_4P$ (572.64); C 77.61, H 5.81; found: C 77.66, H 5.97. Data of ($^{\circ}$ C_P)-37. M.p. 239-240° (dec.). R_f (hexane/AcOEt 2:1) 0.25. [$a_f^{\text{DL}} = -124.8$ (c = 0.69, CHCl₃). IR (CHCl₃): 3426w (br.), 3058w, 2991m, 1600w, 1496m, 1449m, 1437w, 1383m, 1374w, 1170m, 1116m, 1094s, 1075m, 1034w, 1102m, 981s, 940m, 921w, 903m, 864m. 1 H-NMR (300 MHz, CDCl₃): 0.92 (s, Me); 1.42 (s, Me); 4.64 (d, J = 9.8, CH); 5.58 (dd, J = 9.8, J(H,P) = 1.9, CH); 7.02 - 7.56 (m, 19 arom. H); 7.61 - 7.67 (m, 2 arom. H); 7.78 - 7.87 (m, 2 arom. H); 7.91 - 7.97 (m, 2 arom. H). 13 C-NMR (100 MHz, CDCl₃): 26.23, 26.75 (Me); 62.34 (d, 1 J(C,P) = 75.6) (C); 74.22, 79.14 (d, 1 J(C,P) = 4.9) (CH); 90.11 (d, 2 J(C,P) = 8.6), 110.76 (C); 125.70, 126.83, 126.93, 127.20, 127.23, 127.48, 127.65, 127.91, 128.03, 128.20, 128.28, 128.38, 128.61, 129.92, 129.98, 132.64, 132.75, 134.32, 134.45 (CH) (C,P couplings!); 130.10 (d, 1 J(C,P) = 136.7), 138.02, 139.33, 140.30 (d, 1 J(C,P) = 6.1), 145.66 (d, 1 J(C,P) = 7.3) (C). 31 P-NMR (121 MHz, CDCl₃): 35.37. MALDI-FT-ICR-MS: 611.2 (7, [1 M + K] $^{+}$), 595.2 (64, [1 M + Na] $^{+}$), 455.2 (9), 431.2 (21), 397.2 (100), 357.2 (9), 330.1 (45), 321.1 (12). HR-MS: 595.1966 ([1 M + Na] $^{+}$), 1 C₃₇H₃₃NaO₄P $^{+}$; calc. 595.2008 (-7.1 ppm)). Dimethyl P-[f(4R,5R)-5-[(Hydroxy)(diphenyl)methyl]-2,2-dimethyl-1,3-dioxolan-4-yl}(diphenyl)methyl]phosphonate (38). Sulfate 34 (250 mg, 0.47 mmol) was treated with P(OMe)₃ in DMF (3 ml) at 80° according to GP 6. FC (SiO₂ (70 g); pentane/Et₂O 8:2 → pentane/Et₂O 1:1) and subsequent precipitation from CH₂Cl₂/hexane afforded 38 (136 mg, 51%). Colorless solid. M.p. 234-237°. $R_{\rm f}$ (hexane/AcOEt 8:2) 0.43. $[\alpha]_D^{\text{r.t.}} = -117.6 \ (c = 1.09, \text{CHCl}_3)$. IR (CHCl₃): 3324br. m, 3062w, 3007m, 2956m, 2853w, 1600w, 1495m, 1447m, 1380w, 1370w, 1166m, 1056s, 1035s, 875w, 830w, 658w, 632w. ¹H-NMR (400 MHz, CDCl₃): 0.25 (s, Me); 0.51 (s, Me); 3.55 (d, ${}^{3}J(H,P) = 10.9$, Me); 3.64 (d, ${}^{3}J(H,P) = 10.9$, Me); 3.65 10$ 10.6, Me); 5.26 $(dd, J = 6.0, {}^{4}J(H,P) = 0.6, CH)$; 5.81 $(dd, J = 6.0, {}^{3}J(H,P) = 2.4, CH)$; 5.99 (br. s, OH); 7.17 - 7.34 (m, 12 arom. H); 7.44 - 7.51 (m, 4 arom. H); 7.55 - 7.60 (m, 2 arom. H); 7.71 - 7.76 (m, 2 arom. H). ${}^{13}\text{C-NMR}$ (100 MHz, CDCl₃): 27.14, 27.99, 53.40 (d, ${}^{2}J(\text{C,P}) = 8.0$), 54.72 (d, ${}^{2}J(\text{C,P}) = 7.3$) (Me); $60.32 (d, {}^{1}J(C,P) = 131.7) (C); 78.45 (d, J(C,P) = 7.4) (CH); 78.49 (C); 83.27 (CH); 111.49 (C); 126.84,$ 126.85, 126.89, 126.92, 127.01, 127.04, 127.13, 127.32, 127.34, 127.57, 127.84, 129.48, 131.69, 131.74, 132.73, 132.81 (CH) (C,P couplings!); 137.19 (d, ${}^{2}J(C,P) = 2.1$), 139.45 (d, ${}^{2}J(C,P) = 10.0$), 143.66, 149.34 (C). 31 P-NMR (121 MHz, CDCl₃): 28.50. MALDI-FT-ICR-MS: 597.2 (3,
[M + K]⁺), 581.2 (100, [M + Na]⁺), 483.2 (6), 431.2 (8), 373.2 (31), 355.1 (9), 341.1 (6), 305.1 (11), 298.1 (25), 289.1 (41). HR-MS: 581.2054 $([M + Na]^+, C_{33}H_{35}NaO_6P^+; calc. 581.2063 (-1.5 ppm))$. Anal. calc. for $C_{33}H_{35}O_6P (558.61)$: C 70.96, H 6.32: found: C 70.92, H 6.48. Dimethyl P-[f(4R,5R)-5-[(methoxy)(diphenyl)methyl]-2,2-dimethyl-1,3-dioxolan-4-yl](diphenyl)methyl]phosphonate (39). Compound 35 [1a] (1.45 g, 2.91 mmol) was treated with P(OMe)₃ (3.5 ml, 30 ml) in DMF (10 ml) at 120° according to GP 6. The residue was dissolved in CH₂Cl₂ (15 ml), the soln. was washed with H2O, and the org. layer was separated (tedious phase separation!). The aq. layer was extracted with CH₂Cl₂ (3×), the combined org. layers were washed with H₂O and sat. aq. NaCl soln., dried (Na₂SO₄), and concentrated under reduced pressure. The crude product (1.88 g) was triturated with Et₂O (ca. 10 ml) to afford 39 (990 mg, 59%). Slightly beige powder. For anal. purposes, a sample was purified by FC (pentane/Et₂O 4:1 \rightarrow Et₂O). Colorless powder. M.p. 225 – 226°. R_f (hexane/AcOEt 4:1) $0.14. [\alpha]_{\rm D}^{\rm TL} = -3.2 \ (c = 1.11, {\rm CHCl_3}). \ {\rm IR} \ ({\rm CHCl_3}): 3389 {\rm br.} \ w, 3059w, 3002m, 2953m, 2850w, 1600w, 1494m,$ 1445m, 1380w, 1370w, 1170m, 1080s, 1035s, 909w, 881w. ¹H-NMR (400 MHz, CDCl₃): 0.80 (s, Me); 1.35 (s, Me); 2.08 (s, MeO); 3.39 (d, ${}^{3}J(H,P) = 10.9$, Me); 3.65 (d, ${}^{3}J(H,P) = 10.8$, Me); 4.67 (dd, ${}^{3}J(H,P) = 18.7$, J = 7.7, CH); 5.56 (d, J = 7.7, CH); 7.10 – 7.16 (m, 2 arom. H); 7.21 – 7.35 (m, 14 arom. H); 7.55 – 7.60 (m, 2 arom. H); 7.67 - 7.72 (m, 2 arom. H). 13 C-NMR (100 MHz, CDCl₃): 27.30, 27.67, 51.38, 52.93 (d, 2 J(C,P) = 7.9), 53.35 (d, ${}^{2}J(C,P) = 7.3$) (Me); 60.75 (d, ${}^{1}J(C,P) = 134.8$) (C); 80.62 (d, J(C,P) = 5.9), 81.99 (d, J(C,P) = 6.5) (CH); 84.22, 108.58 (C); 126.64, 126.66, 126.72, 126.84, 126.88, 126.90, 127.27, 127.40, 127.48, 129.84, 131.10, 131.43, 131.49, 132.37, 132.45 (CH) (C,P couplings!); 137.61, 138.94, 140.48, 140.56 (C). 31 P-NMR (121 MHz, CDCl₃): 28.66. MALDI-FT-ICR-MS: 611.2 (5, $[M + K]^+$), 595.2 (75, $[M + Ka]^+$), 373.2 (5), 298.1 (100). Anal. calc. for $C_{34}H_{37}O_6P$ (572.64): C 71.31, H 6.51; found: C 71.24, H 6.63. [[(4R,5R)-5-[(Methoxy)(diphenyl)methyl]-2,2-dimethyl-1,3-dioxolan-4-yl](diphenyl)methyl](diphenyl)phosphorane Oxide (40). Compound 34 (250 mg, 0.50 mmol) was treated with Ph₂P(OMe) (450 mg, 2.1 mmol) in DMF (4 ml) at 120° according to GP 6. FC (SiO₂ (50 g); pentane/Et₂O 4:1 \rightarrow Et₂O) and subsequent trituration with Et₂O afforded **40** (85 mg, 25%). Colorless powder. M.p. 183 – 199°. $R_{\rm f}$ (hexane/AcOEt 4:1) 0.2. $[a]_{\rm D}^{\rm r.t.} = -57.3$ (c = 1.57, CHCl₃). IR (CHCl₃): 3326w (br.), 3058m, 2988m, 2827w, 1600w, 1495m, 1447m, 1437m, 1382m, 1372m, 1166s, 1091s, 1064s, 1036w, 1001w, 976w, 908w, 869m. ¹H-NMR (400 MHz, CDCl₃): 0.70 (s, Me); 0.97 (s, Me); 2.05 (s, MeO); 4.98 – 5.02 (m, CH); 5.37 (d, J = 7.7, CH); 6.97 – 7.81 (m, 30 arom. H). ¹³C-NMR (100 MHz, CDCl₃): 27.05, 27.23, 51.07 (Me); 62.96 (d, ${}^{1}J(C,P) = 60.7$) (C); 80.35 (d, ${}^{3}J(C,P) = 8.0$), 82.02 (d, ${}^{2}J(C,P) = 4.2$) (CH); 83.99, 108.03 (C); 126.39, 126.79, 126.88, 127.00, 127.02, 127.10, 127.22, 127.33, 127.40, 127.50, 129.79, 130.33, 130.35, 130.48, 127.00, 127.130.50, 131.01, 132.70, 132.75, 133.17, 133.20, 133.25, 133.30, 133.37 (CH) (C,P couplings!); 134.14 (d, ${}^{1}J(C,P) = 93.8$), 134.57 (d, ${}^{1}J(C,P) = 90.9$), 135.75, 137.72, 137.91 (d, ${}^{2}J(C,P) = 5.2$), 140.54 (C). ${}^{3}IP-NMR$ $(121 \text{ MHz}, \text{CDCl}_3): 36.30. \text{ MALDI-FT-ICR-MS}: 700.3 (2, [M + K]^+), 687.3 (84, [M + Na]^+), 431.2 (20),$ 390.1 (100), 368.1 (14). Anal. calc. for C₄₄H₄₁O₄P (664.78): C 79.50, H 6.22; found: C 79.67, H 6.27. (4\$,5R)-4-(Diphenylmethyl)-5-[(methoxy)(diphenyl)methyl]-2,2-dimethyl-1,3-dioxolane (41). To a suspension of CeCl₃ (128 mg, 0.52 mmol) in THF (10 ml), 40 (150 mg, 0.22 mmol) and LiAlH₄ (20 mg, 0.52 mmol) were added consecutively at r.t. After stirring for 2.5 h (TLC control), 1N aq. NaOH soln. (1 ml), H₂O (8 ml) and Et₂O (10 ml) were added. The org. layer was separated, and the aq. layer was extracted with Et₂O. The combined org. layers were washed with sat. aq. NaCl soln., dried (Na₂SO₄), and concentrated under reduced pressure. The residue was purified by FC (SiO₂ (20 g); pentane/Et₂O 4:1) to afford **41** (45 mg, 45%). White foam. M.p. 73 – 78°. $R_{\rm f}$ (hexane/AcOEt 2:1) 0.73. $[\alpha]_{\rm D}^{\rm r.t.} = -19.1$ (c = 1.06, Table 1. Crystallographic Data for 10, 12a, 12b, (R)-15, and 23 | | 10 | 12a | 12b | (R)- 15 | 23 | |---|-----------------------------|--------------------------------|-------------------------|---|--| | Formula | $C_{43}H_{40}N_2O_2$ | $C_{32}H_{30}N_2O_3^+O_{0.25}$ | $C_{32}H_{30}N_2O_2S$ | C ₄₀ H ₃₈ N ₂ O ₂ S | C ₃₁ H ₂₈ ClO ₅ P | | Formula weight [g/mol] | 616.81 | 494.58 | 506.64 | 610.78 | 546.95 | | T[K] | 293(2) | 293(2) | 293(2) | 293(2) | 293(2) | | Wavelength [Å] | 0.71069 | 0.71069 | 1.54178 | 1.54178 | 1.54184 | | Source | MoK_a | MoK_a | $\mathrm{Cu}K_{a}$ | CuK_a | $\mathrm{Cu}K_{a}$ | | Crystal dimensions [mm] | $0.4 \times 0.3 \times 0.3$ | $0.4\times0.3\times0.3$ | $0.3\times0.2\times0.1$ | $0.5\times0.3\times0.1$ | $0.4\times0.3\times0.2$ | | Crystal system | monoclinic | orthorhombic | monoclinic | triclinic | orthorhombic | | Space group | $P2_1$ | $P2_{1}2_{1}2$ | $P2_1$ | P1 | $P2_12_12_1$ | | θ Range [°] | $1.9 < \theta < 26.0$ | $1.8 < \theta < 25.0$ | $4.3 < \theta < 50.0$ | $4.4 < \theta < 50$ | $3.7 < \theta < 65.0$ | | a [Å] | 9.472(1) | 16.003(4) | 8.30(1) | 8.826(6) | 9.671(4) | | b [Å] | 16.287(2) | 14.252(2) | 15.53(3) | 10.090(9) | 16.355(8) | | c [Å] | 11.194(2) | 11.517(1) | 10.34(2) | 10.687(7) | 17.239(4) | | α [$^{\circ}$] | 90 | 90 | 90 | 68.84(6) | 90 | | β [°] | 99.82(1) | 90 | 93.8(2) | 80.04(5) | 90 | | γ [°] | 90 | 90 | 90 | 68.62(7) | 90 | | V [Å ³] | 1701.6(3) | 2626.7(8) | 1330(4) | 825(1) | 2727(2) | | Z | 2 | 4 | 2 | 1 | 4 | | $ ho_{ m calc}$ [g cm $^{-3}$] | 1.204 | 1.251 | 1.265 | 1.229 | 1.332 | | μ [mm $^{-1}$] | 0.073 | 0.081 | 1.327 | 1.157 | 2.119 | | Total reflections measured | 1 3635 | 2616 | 1441 | 1703 | 2663 | | Independent reflections | 3459 | 2616 | 1441 | 1703 | 2637 | | Reflections observed | 2451 | 1506 | 1383 | 1682 | 2139 | | No. of variables | 584 | 366 | 335 | 407 | 343 | | Criterion | $I > 2\sigma(I)$ | $I > 2\sigma(I)$ | $I > 2\sigma(I)$ | $I > 2\sigma(I)$ | $I > 3\sigma(I)$ | | Final R [%] | 3.56 | 4.81 | 3.48 | 3.67 | 9.62 | | wR_2 [%] | 9.90 | 14.94 | 9.41 | 8.96 | 28.38 | | Goodness-of-fit | 1.093 | 1.137 | 1.012 | 1.123 | 2.343 | | $\Delta \rho$ (max, min) [e Å ⁻³] | | 0.414, -0.232 | | | 0.641, -0.663 | | CCDC No. | 157927 | 157930 | 157931 | 157932 | 157934 | CHCl₃). IR (CHCl₃): 3060m, 3007m, 2938m, 2832w, 1949w, 1885w, 1813w, 1652m, 1598m, 1494s, 1445s, 1383s, 1373m, 1326w, 1264s, 1177w, 1135s, 1072s, 1033w, 990w, 867m. 1H -NMR (300 MHz, CDCl₃): 1.02 (s, Me); 1.23 (s, Me); 3.18 (s, MeO); 3.24 (s, 1 H); 4.53 – 4.60 (m, 2 H); 7.09 – 7.35 (m, 18 arom. H); 7.42 – 7.47 (m, 2 arom. H). 13 C-NMR (75 MHz, CDCl₃): 26.96, 27.03 (Me); 51.76 (CH); 54.04 (Me); 79.41, 81.06 (CH); 83.49, 108.97 (C); 125.95, 126.41, 127.39, 127.56, 127.62, 128.09, 128.16, 128.66, 128.75, 129.93, 131.41 (CH); 140.27, 141.32, 142.80, 144.19 (C). MALDI-FT-ICR-MS: 487.2 (52, $[M + Na]^+$), 413.3 (14, $[M - O_2$ CMe $_2$ + $Na]^+$), 357.2 (6), 279.1 (8), 273.0 (100, matrix), 263.1 (29), 219.1 (22), 180.1 (24). HR-MS: 487.2232 ($[M + Na]^+$, C_{32} H $_{32}$ NaO $_3^+$; calc. 487.2244 (-2.5 ppm)). 7. X-Ray Data. See Tables 1 and 2. Table 2. Crystallographic Data for 27, 34, (S_P)-37, 38, and 39 | | 27 | 34 | (S _P)-37 | 38 | 39 | |---|-----------------------------
-------------------------|-------------------------|--|-------------------------| | Formula | $C_{44}H_{41}N_2O_3P$ | $C_{31}H_{28}O_6S$ | $C_{37}H_{33}O_4P$ | C ₃₃ H ₃₅ O ₆ P | $C_{34}H_{37}O_6P$ | | Formula weight [g/mol] | 676.76 | 528.59 | 572.60 | 558.58 | 572.61 | | T[K] | 293(2) | 293(2) | 293(2) | 293(2) | 293(2) | | Wavelength [Å] | 0.71073 | 0.71073 | 0.71073 | 1.54178 | 0.71073 | | Source | MoK_a | MoK_a | MoK_{α} | CuK_{α} | $\mathrm{Mo}K_{a}$ | | Crystal dimensions [mm] | $0.4 \times 0.3 \times 0.2$ | $0.5\times0.4\times0.3$ | $0.4\times0.2\times0.2$ | $0.2\times0.1\times0.1$ | $0.4\times0.2\times0.2$ | | Crystal system | monoclinic | monoclinic | orthorhombic | orthorhombic | orthorhombic | | Space group | $P2_1$ | $P2_1$ | $P2_12_12_1$ | $P2_12_12_1$ | $P2_12_12_1$ | | θ Range [°] | $1.8 < \theta < 20.0$ | $1.8 < \theta < 20.0$ | $1.7 < \theta < 21.6$ | $3.5 < \theta < 50.0$ | $1.9 < \theta < 20.0$ | | a [Å] | 10.657(4) | 10.592(9) | 9.661(5) | 9.010(8) | 11.683(7) | | b [Å] | 15.164(4) | 16.26(2) | 14.801(6) | 16.45(2) | 17.77(1) | | c [Å] | 11.728(4) | 16.09(2) | 21.172(6) | 19.77(2) | 18.373(8) | | <i>α</i> [°] | 90 | 90 | 90 | 90 | 90 | | β [$^{\circ}$] | 107.96(2) | 107.76(7) | 90 | 90 | 90 | | γ [°] | 90 | 90 | 90 | 90 | 90 | | V [Å 3] | 1803(1) | 2639(5) | 3027(2) | 2925(5) | 2956(3) | | Z | 2 | 4 | 4 | 4 | 4 | | $ ho_{ m calc}$ [g cm $^{-3}$] | 1.247 | 1.331 | 1.256 | 1.267 | 1.287 | | μ [mm $^{-1}$] | 0.120 | 0.167 | 0.130 | 1.187 | 0.138 | | Total reflections measured | 1907 | 2710 | 1989 | 1735 | 1604 | | Independent reflections | 1785 | 2595 | 1989 | 1735 | 1604 | | Reflections observed | 1515 | 2304 | 1517 | 1469 | 1316 | | No. of variables | 493 | 690 | 382 | 362 | 371 | | Criterion | $I > 2\sigma(I)$ | | Final R [%] | 2.52 | 2.63 | 2.69 | 10.16 | 2.83 | | wR_2 [%] | 5.64 | 5.70 | 5.31 | 23.10 | 5.93 | | Goodness-of-fit | 0.810 | 0.957 | 0.761 | 1.066 | 0.918 | | $\Delta \rho$ (max, min) [e Å ⁻³] | 0.107, -0.106 | 0.103, -0.171 | 0.097, -0.114 | 0.630, -0.569 | 0.111, -0.134 | | CCDC No. | 157933 | 157935 | 157936 | 157937 | 157938 | ## REFERENCES - a) A. Pichota, V. Gramlich, A. K. Beck, D. Seebach, *Helv. Chim. Acta*, 2012, 95, 1239; b) A. Pichota, H.-U. Bichsel, W. B. Schweizer, A. K. Beck, D. Seebach, *Helv. Chim. Acta*, 2012, 95, 1303. - [2] D. Seebach, A. K. Beck, M. Hayakawa, G. Jaeschke, F. N. M. Kühnle, I. Nägeli, A. B. Pinkerton, P. B. Rheiner, R. O. Duthaler, P. M. Roth, W. Weigand, R. Wünsch, S. Dick, R. Nesper, M. Wörle, V. Gramlich, *Bull. Soc. Chim. Fr.* 1997, 134, 315. - [3] D. Seebach, M. Hayakawa, J.-i. Sakaki, W. B. Schweizer, Tetrahedron 1993, 49, 1711. - [4] A. K. Beck, B. Bastani, D. A. Plattner, W. Petter, D. Seebach, H. Braunschweiger, P. Gysi, L. La Vecchia, *Chimia* 1991, 45, 238. - [5] D. Seebach, A. Pichota, A. K. Beck, A. B. Pinkerton, T. Litz, J. Karjalainen, V. Gramlich, Org. Lett. 1999, 1, 55. - [6] W. Jasiobedzki, J. Woźniak-Kornacka, Bull. Acad. Pol. Sci., Ser. Sci. Chem. 1979, 27, 665; X. Hu, Z. Shan, X. Peng, Z. Li, Tetrahedron: Asymmetry 2009, 20, 2474. - [7] M. Waser, M. Haunschmidt, M. Himmelsbach, Monatsh. Chem. 2010, 141, 1347. - [8] E. Juaristi, A. K. Beck, J. Hansen, T. Matt, T. Mukhopadhyay, M. Simson, D. Seebach, Synthesis 1993, 1271. - [9] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953; A. K. Chatterjee, R. H. Grubbs, Org. Lett. 1999, 1, 1751. - [10] A. J. Arduengo III, Acc. Chem. Res. 1999, 32, 913; D. Enders, K. Breuer, J. Runsink, J. H. Teles, Liebigs Ann. 1996, 2019. - [11] E. J. Corey, R. A. E. Winter, J. Am. Chem. Soc. 1963, 85, 2677; E. J. Corey, F. A. Carey, R. A. E. Winter, J. Am. Chem. Soc. 1965, 87, 934. - [12] D. A. Plattner, A. K. Beck, M. Neuburger, Helv. Chim. Acta 2002, 85, 4000; E. Zass, D. A. Plattner, A. K. Beck, M. Neuburger, Helv. Chim. Acta 2002, 85, 4012. - [13] J.-i. Sakaki, W. B. Schweizer, D. Seebach, Helv. Chim. Acta 1993, 76, 2654; D. Seebach, E. Devaquet, A. Ernst, M. Hayakawa, F. N. M. Kühnle, W. B. Schweizer, B. Weber, Helv. Chim. Acta 1995, 78, 1636; D. Heldmann, D. Seebach, Helv. Chim. Acta 1999, 82, 1096. - [14] W. W. Lam, Synthesis 2011, 2011. - [15] S. Perreault, T. Rovis, Chem. Soc. Rev. 2009, 38, 3149. - [16] K. Hong, J. P. Morken, J. Org. Chem. 2011, 76, 9102. - [17] M. R. Albicker, N. Cramer, Angew. Chem. 2009, 121, 9303; Angew. Chem., Int. Ed. 2009, 48, 9139. - [18] L. A. Brozek, J. D. Sieber, J. P. Morken, Org. Lett. 2011, 13, 995; M. Luparia, M. T. Oliveira, D. Audisio, F. Frébault, R. Goddard, N. Maulide, Angew. Chem. 2011, 123, 12840; Angew. Chem., Int. Ed. 2011, 50, 12631. - [19] T. Robert, Z. Abiri, J. Wassenaar, A. J. Sandee, S. Romanski, J.-M. Neudörfl, H.-G. Schmalz, J. N. H. Reek, Organometallics 2010, 29, 478; Q. Naeemi, T. Robert, D. P. Kranz, J. Velder, H.-G. Schmalz, Tetrahedron: Asymmetry 2011, 22, 887. - [20] D. Enders, L. Tedeschi, J. W. Bats, Angew. Chem. 2000, 112, 4774; Angew. Chem., Int. Ed. 2000, 39, 4605; D. Enders, L. Tedeschi, D. Förster, Synthesis 2006, 1447. - [21] X. Linghu, J. R. Potnick, J. S. Johnson, J. Am. Chem. Soc. 2004, 126, 3070; M. R. Nahm, J. R. Potnick, P. S. White, J. S. Johnson, J. Am. Chem. Soc. 2006, 128, 2751. - [22] a) K. M. Oberg, M. E. Oinen, D. M. Dalton, J. M. Neely, R. Keller Friedman, T. Rovis, *Org. Synth.*, submitted in Oct. 2011; b) J. P. Perotti, R. M. Cravero, L. E. Luna, R. J. A. Grau, S. E. Vaillard, *ARKIVOC* 2011, (xi), 92. - [23] a) R. T. Yu, T. Rovis, J. Am. Chem. Soc. 2006, 128, 12370; b) H. E. Burks, S. Liu, J. P. Morken, J. Am. Chem. Soc. 2007, 129, 8766. - [24] S. A. Moteki, D. Wu, K. L. Chandra, D. S. Reddy, J. M. Takacs, Org. Lett. 2006, 8, 3097. - [25] a) A. Alexakis, J. Burton, J. Vastra, C. Benhaim, X. Fournioux, A. van den Heuvel, J.-M. Levêque, F. Mazé, S. Rosset, Eur. J. Org. Chem. 2000, 4011; b) M. Mewald, A. Weickgenannt, R. Fröhlich, M. Oestreich, Tetrahedron: Asymmetry 2010, 21, 1232. - [26] E. Keller, J. Maurer, R. Naasz, T. Schader, A. Meetsma, B. L. Feringa, *Tetrahedron: Asymmetry* 1998, 9, 2409; E. E. Lee, T. Rovis, *Org. Lett.* 2008, 10, 1231; T. Pfretzschner, L. Kleemann, B. Janza, K. Harms, T. Schrader, *Chem. Eur. J.* 2004, 10, 6048. - [27] D. M. Dalton, K. M. Oberg, R. T. Yu, E. E. Lee, S. Perreault, M. E. Oinen, M. L. Pease, G. Malik, T. Rovis, J. Am. Chem. Soc. 2009, 131, 15717. - [28] D. Seebach, A. K. Beck, D. J. Bierbaum, 'Die Welt der β- und γ-Peptide aus homologisierten proteinogenen Aminosäuren und andere Bausteine', Verlag Helvetica Chimica Acta, Zürich, 2004; D. Seebach, A. K. Beck, D. J. Bierbaum, *Chem. Biodiversity* 2004, 1, 1111. - [29] H. B. Kagan, T.-P. Dang, J. Am. Chem. Soc. 1972, 94, 6429; H. B. Kagan, J. C. Fiaud, C. Hoornaert, D. Meyer, J. C. Poulin, Bull. Soc. Chim. Belg. 1979, 88, 923; H. B. Kagan, M. Sasaki, 'Optical active - phosphines: preparation, use and chiroptical properties', in 'The Chemistry of Organophosphorus Compounds', Ed. F. R. Hartley, John Wiley, Chichester, 1990, Vol. 1, pp. 51–102. - [30] D. Seebach, A. K. Beck, A. Heckel, Angew. Chem. 2001, 113, 96; Angew. Chem., Int. Ed. 2001, 40, 92; H. Pellissier, Tetrahedron 2008, 64, 10279; H. Pellissier, 'TADDOLate Ligands', in 'Privileged Chiral Ligands and Catalysts', Ed. Q.-L. Zhou, Wiley-VHC, Weinheim, 2011, pp. 333–359; C. M. Binder, B. Singaram, Org. Prep. Proced. Int. 2011, 11, 139; M. Braun, Angew. Chem. 2012, 124, 2600; Angew. Chem., Int. Ed. 2012, 51, 2550. - [31] G. Wittig, W. Haag, Chem. Ber. 1955, 88, 1654. - [32] N. Kreutzkamp, Chem. Ber. 1954, 87, 919. - [33] H. Niebergall, B. Langenfeld, Chem. Ber. 1962, 95, 64; K. Issleib, A. Tzschach, Chem. Ber. 1959, 92, 704. - [34] G. Wittig, Freiherr von Lupin, Ber. Dtsch. Chem. Ges. 1928, 61, 1627. - [35] W. Adam, A. Berkessel, K. Hildenbrand, E.-M. Peters, K. Peters, H. G. Schnering, J. Org. Chem. 1985, 50, 4899. - [36] D. Seebach, P. B. Rheiner, A. K. Beck, F. N. M. Kühnle, B. Jaun, Pol. J. Chem. 1994, 68, 2397. - [37] A. Michaelis, R. Kaehne, Ber. Dtsch. Chem. Ges. 1898, 31, 1048; A. E. Arbuzov, J. Russ. Phys. Chem. Soc. 1906, 38, 687; V. Zawidzki, Chem. Zentralbl. 1906, II, 1639; A. K. Bhattacharya, G. Thyagarajan, Chem. Rev. 1981, 81, 415; A. E. Arbuzov, K. V. Nikonorov, J. Gen. Chem. USSR 1947, 2139 (Chem. Abstr. 1948, 42, 4546b). - [38] M. J. Burk, T. G. P. Harper, C. S. Kalberg, J. Am. Chem. Soc. 1995, 117, 4423; W. Li, Z. Zhang, D. Xiao, X. Zhang, Tetrahedron Lett. 1999, 40, 6701; Y.-Y. Yan, T. V. RajanBabu, J. Org. Chem. 2000, 65, 900. - [39] Y. Goa, K. B. Sharpless, J. Am. Chem. Soc. 1988, 110, 7538. - [40] A. I. Nicholls, P. F. Alewood, R. I. Brinkworth, S. F. Morrison, P. R. Andrews, J. Chem. Res., Synop. 1993, 408. - [41] A. K. Beck, M. Gautschi, D. Seebach, Chimia 1990, 44, 291. Received March 23, 2012